Journal Home > Volume 14 , Issue 9

Nanoparticles of refractory compounds represent a class of stable materials showing a great promise to support localized surface plasmon resonances (LSPRs) in both visible and near infrared (NIR) spectral regions. It is still challenging to rationally tune the LSPR band because of the difficulty to control the density of charge carriers in individual refractory nanoparticles and maintain the dispersity of nanoparticles in the processes of synthesis and applications. In this work, controlled chemical transformation of titanium dioxide (TiO2) nanoparticles encapsulated with mesoporous silica (SiO2) shells to titanium nitride (TiN) via nitridation reaction at elevated temperatures is developed to tune the density of free electrons in the resulting titanium-oxide-nitride (TiOxNy) nanoparticles. Such tunability enables a flexibility to support LSPR-based optical absorption in the synthesized TiOxNy@SiO2 core-shell nanoparticles across both the visible and NIR regions. The silica shells play a crucial role in preventing the sintering of TiOxNy nanoparticles in the nitridation reaction and maintaining the stability of TiOxNy nanoparticles in applications. The LSPR-based broadband absorption of light in the TiOxNy@SiO2 nanoparticles exhibits strong photothermal effect with photo-to-thermal conversion efficiency as high as ~ 76%.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property

Show Author's information Qilin Wei1Danielle L. Kuhn2Zachary Zander2Brendan G. DeLacy2Hai-Lung Dai1( )Yugang Sun1( )
Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA
U.S. Army Edgewood Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, Maryland 21010, USA

Abstract

Nanoparticles of refractory compounds represent a class of stable materials showing a great promise to support localized surface plasmon resonances (LSPRs) in both visible and near infrared (NIR) spectral regions. It is still challenging to rationally tune the LSPR band because of the difficulty to control the density of charge carriers in individual refractory nanoparticles and maintain the dispersity of nanoparticles in the processes of synthesis and applications. In this work, controlled chemical transformation of titanium dioxide (TiO2) nanoparticles encapsulated with mesoporous silica (SiO2) shells to titanium nitride (TiN) via nitridation reaction at elevated temperatures is developed to tune the density of free electrons in the resulting titanium-oxide-nitride (TiOxNy) nanoparticles. Such tunability enables a flexibility to support LSPR-based optical absorption in the synthesized TiOxNy@SiO2 core-shell nanoparticles across both the visible and NIR regions. The silica shells play a crucial role in preventing the sintering of TiOxNy nanoparticles in the nitridation reaction and maintaining the stability of TiOxNy nanoparticles in applications. The LSPR-based broadband absorption of light in the TiOxNy@SiO2 nanoparticles exhibits strong photothermal effect with photo-to-thermal conversion efficiency as high as ~ 76%.

Keywords: photothermal effect, titanium-oxide-nitride nanoparticles, mesoporous silica coating, nitridation reaction, structural transformation, plasmonic absorption

References(44)

[1]
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
[2]
Ray, P. C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 2010, 110, 5332-5365.
[3]
Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679-684.
[4]
Liu, J. N.; Pan, L. M.; Shang, C. F.; Lu, B.; Wu, R. J.; Feng, Y.; Chen, W. Y.; Zhang, R. W.; Bu, J. W.; Xiong, Z. Q. et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci. Adv. 2020, 6, eaax9757.
[5]
Gupta, N.; Chan, Y. H.; Saha, S.; Liu, M. H. Recent development in near-infrared photothermal therapy based on semiconducting polymer dots. ACS Appl. Polym. Mater. 2020, 2, 4195-4221.
[6]
Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811-817.
[7]
Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P. et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068-2077.
[8]
Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A. V.; Shalaev, V. M.; Boltasseva, A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 2017, 4, 1413-1420.
[9]
Xing, Y.; Tang, S. S.; Du, X.; Xu, T. L.; Zhang, X. J. Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. Nano Res. 2021, 14, 654-659.
[10]
Chen, Y. C.; Hsu, Y. K.; Popescu, R.; Gerthsen, D.; Lin, Y. G.; Feldmann, C. Au@Nb@HxK1-xNbO3 nanopeapods with near-infrared active plasmonic hot-electron injection for water splitting. Nat. Commun. 2018, 9, 232.
[11]
Appleyard, P. G. Infrared extinction performance of high aspect ratio carbon nanoparticles. J. Opt. A: Pure Appl. Opt. 2006, 8, 101-113.
[12]
Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, L.; Lu, X. F.; Zhang, J. W.; Chen, T. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering. Langmuir 2017, 33, 5378-5384.
[13]
Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.
[14]
Chang, H. H.; Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 2018, 30, 1427-1435.
[15]
Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220-19225.
[16]
Radloff, C.; Halas, N. J. Plasmonic properties of concentric nanoshells. Nano Lett. 2004, 4, 1323-1327.
[17]
Kumar, M.; Umezawa, N.; Ishii, S.; Nagao, T. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics 2016, 3, 43-50.
[18]
Mohsen, A. A.; Zahran, M.; Habib, S. E. D.; Allam, N. K. Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells. Sci. Rep. 2020, 10, 6732.
[19]
Xian, Y. H.; Cai, Y.; Sun, X. Y.; Liu, X. F.; Guo, Q. B.; Zhang, Z. X.; Tong, L. M.; Qiu, J. R. Refractory plasmonic metal nitride nanoparticles for broadband near-infrared optical switches. Laser Photonics Rev. 2019, 13, 1900029.
[20]
Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959-7965.
[21]
Naldoni, A.; Guler, U.; Wang, Z. X.; Marelli, M.; Malara, F.; Meng, X. G.; Besteiro, L. V.; Govorov, A. O.; Kildishev, A. V.; Boltasseva, A. et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. 2017, 5, 1601031.
[22]
Zeng, Q. Y.; Bai, J.; Li, J. H.; Zhou, B. X.; Sun, Y. G. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting. Nano Energy 2017, 41, 225-232.
[23]
Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995-3998.
[24]
Lin, L. N.; Feng, X. Y.; Lan, D. P.; Chen, Y.; Zhong, Q. L.; Liu, C.; Cheng, Y.; Qi, R. J.; Ge, J. P.; Yu, C. Z. et al. Coupling effect of Au nanoparticles with the oxygen vacancies of TiO2-x for enhanced charge transfer. J. Phys. Chem. C 2020, 124, 23823-23831.
[25]
Wang, Q.; Brier, M.; Joshi, S.; Puntambekar, A.; Chakrapani, V. Defect-induced Burstein-Moss shift in reduced V2O5 nanostructures. Phys. Rev. B 2016, 94, 245305.
[26]
Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803-810.
[27]
Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3-x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025-3032.
[28]
Ye, X. C.; Reifsnyder Hickey, D.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106-5115.
[29]
Staller, C. M.; Gibbs, S. L.; Saez Cabezas, C. A.; Milliron, D. J. Quantitative analysis of extinction coefficients of tin-doped indium oxide nanocrystal ensembles. Nano Lett. 2019, 19, 8149-8154.
[30]
Howell, I. R.; Giroire, B.; Garcia, A.; Li, S.; Aymonier, C.; Watkins, J. J. Fabrication of plasmonic TiN nanostructures by nitridation of nanoimprinted TiO2 nanoparticles. J. Mater. Chem. C 2018, 6, 1399-1406.
[31]
Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302-4312.
[32]
Zukalova, M.; Prochazka, J.; Bastl, Z.; Duchoslav, J.; Rubacek, L.; Havlicek, D.; Kavan, L. Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem. Mater. 2010, 22, 4045-4055.
[33]
Dong, S. M.; Chen, X.; Gu, L.; Zhou, X. H.; Xu, H. X.; Wang, H. B.; Liu, Z. H.; Han, P. X.; Yao, J. H.; Wang, L. et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl. Mater. Interfaces 2011, 3, 93-98.
[34]
Kan, X. Q.; Deng, C. J.; Yu, C.; Ding, J.; Zhu, H. X. Synthesis, electrochemical and photoluminescence properties of titanium nitride nanoparticles. J. Mater. Sci.: Mater. Electron. 2018, 29, 10624-10630.
[35]
Sjöberg, J.; Pompe, R. Nitridation of amorphous silica with ammonia. J. Am. Ceram. Soc. 1992, 75, 2189-2193.
[36]
Kirchhof, J.; Unger, S.; Dellith, J.; Scheffel, A. Diffusion in binary TiO2-SiO2 glasses. Opt. Mater. Express 2014, 4, 672-680.
[37]
Zhang, Z. Z.; Luo, Z. S.; Yang, Z. P.; Zhang, S. Y.; Zhang, Y.; Zhou, Y. G.; Wang, X. X.; Fu, X. Z. Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water. RSC Adv. 2013, 3, 7215-7218.
[38]
Fletcher, A. N. Molecular structure of ethanol-d1 solutions. Near-infrared study of hydrogen bonding. J. Phys. Chem. 1972, 76, 2562-2571.
[39]
Gschwend, P. M.; Conti, S.; Kaech, A.; Maake, C.; Pratsinis, S. E. Silica-coated TiN particles for killing cancer cells. ACS Appl. Mater. Interfaces 2019, 11, 22550-22560.
[40]
Kaskel, S.; Schlichte, K.; Chaplais, G.; Khanna, M. Synthesis and characterisation of titanium nitride based nanoparticles. J. Mater. Chem. 2003, 13, 1496-1499.
[41]
Kim, I. S.; Kumta, P. N. Hydrazide sol-gel synthesis of nanostructured titanium nitride: Precursor chemistry and phase evolution. J. Mater. Chem. 2003, 13, 2028-2035.
[42]
Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Yu, S. H.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Low-temperature synthesis of nanocrystalline titanium nitride via a benzene-thermal route. J. Am. Ceram. Soc. 2000, 83, 430-432.
[43]
Joshi, U. A.; Chung, S. H.; Lee, J. S. Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J. Solid State Chem. 2005, 178, 755-760.
[44]
Yang, X. G.; Li, C.; Yang, L. H.; Yan, Y.; Qian, Y. T. Reduction-nitridation synthesis of titanium nitride nanocrystals. J. Am. Ceram. Soc. 2003, 86, 206-208.
File
12274_2021_3427_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 January 2021
Revised: 23 February 2021
Accepted: 26 February 2021
Published: 25 March 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This research was funded by the department of the Army Basic Research Program through the Edgewood Chemical and Biological Center, U.S. Army Research Office (No. W911NF-15-2-0052). Partial characterizations were performed using the facilities hosted in the Temple Materials Institute (TMI), Temple University.

Return