Journal Home > Volume 14 , Issue 9

Metal-organic frameworks (MOFs) exhibit attractive properties such as highly accessible surface area, large porosity, tunable pore size, and built-in redox-active metal sites. They may serve as excellent candidates to construct implantable flexible devices for biochemical sensing due to their high thermal and solution stability. However, MOFs-based sensors have only been mostly reported for in-vitro chemical sensing, their use in implantable chemical sensing and combination with flexible electronics to achieve excellent mechanical compatibility with tissues and organs has rarely been summarized. This paper systematically reviews the biochemical sensors based on MOFs and discusses the feasibility to achieve implantable biochemical sensing through MOFs-based flexible electronics. The properties of MOFs and underlying mechanisms have been introduced, followed by a summarization of different biochemical sensing applications. Strategies to integrate MOFs with flexible devices have been supplied from the standpoints of matching mechanics and compatible fabrication processes. Issues that should be addressed in developing flexible MOFs sensors and potential solutions have also been provided, followed by the perspective for future applications of flexible MOFs sensors. This paper may serve as a reference to offer potential guidelines for the development of flexible MOFs-based biochemical sensors that may benefit future applications in personal healthcare, disease diagnosis and treatment, and fundamental study of various biological processes.


menu
Abstract
Full text
Outline
About this article

Metal-organic frameworks as functional materials for implantable flexible biochemical sensors

Show Author's information Ya Li1,§Wei Ling1,§Xinyu Liu1Xue Shang1Pan Zhou1Zhaorun Chen1Hang Xu1Xian Huang1,2( )
Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
Center of Flexible Wearable Technology, Institute of flexible electronic technology of Tsinghua, Jiaxing 314006, China

§ Ya Li and Wei Ling contributed equally to this work.

Abstract

Metal-organic frameworks (MOFs) exhibit attractive properties such as highly accessible surface area, large porosity, tunable pore size, and built-in redox-active metal sites. They may serve as excellent candidates to construct implantable flexible devices for biochemical sensing due to their high thermal and solution stability. However, MOFs-based sensors have only been mostly reported for in-vitro chemical sensing, their use in implantable chemical sensing and combination with flexible electronics to achieve excellent mechanical compatibility with tissues and organs has rarely been summarized. This paper systematically reviews the biochemical sensors based on MOFs and discusses the feasibility to achieve implantable biochemical sensing through MOFs-based flexible electronics. The properties of MOFs and underlying mechanisms have been introduced, followed by a summarization of different biochemical sensing applications. Strategies to integrate MOFs with flexible devices have been supplied from the standpoints of matching mechanics and compatible fabrication processes. Issues that should be addressed in developing flexible MOFs sensors and potential solutions have also been provided, followed by the perspective for future applications of flexible MOFs sensors. This paper may serve as a reference to offer potential guidelines for the development of flexible MOFs-based biochemical sensors that may benefit future applications in personal healthcare, disease diagnosis and treatment, and fundamental study of various biological processes.

Keywords: metal-organic frameworks, flexible electronics, biosensors, chemical sensing, implantable devices

References(428)

[1]
Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/ attachable health monitoring. Small 2017, 13, 1602790.
[2]
Song, Y.; Min, J. H.; Gao, W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano 2019, 13, 12280-12286.
[3]
Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
[4]
Kim, K.; Kim, B.; Lee, C. H. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems. Adv. Mater. 2020, 32, 1902051.
[5]
Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-1491.
[6]
Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-533.
[7]
Ling, W.; Liew, G.; Li, Y.; Hao, Y. F.; Pan, H. Z.; Wang, H. J.; Ning, B. A.; Xu, H.; Huang, X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks. Adv. Mater. 2018, 30, 1800917.
[8]
Ling, W.; Yu, J. X.; Ma, N.; Li, Y.; Wu, Z. Y.; Liang, R.; Hao, Y. F.; Pan, H. Z.; Liu, W. T.; Fu, B. et al. Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Adv. Funct. Mater. 2020, 30, 2002644.
[9]
Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.
[10]
Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2016, 2, e1601473.
[11]
Gao, Y. J.; Ota, H.; Schaler, E. W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H. M.; Leng, Y. G.; Zheng, A. Z.; Xiong, F. et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985.
[12]
Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516-521.
[13]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[14]
Yao, S. S.; Myers, A.; Malhotra, A.; Lin, F. Y.; Bozkurt, A.; Muth, J. F.; Zhu, Y. A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 2017, 6, 1601159.
[15]
Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.
[16]
Li, H. C.; Xu, Y.; Li, X. M.; Chen, Y.; Jiang, Y.; Zhang, C. X.; Lu, B. W.; Wang, J.; Ma, Y. J.; Chen, Y. H. et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv. Healthc. Mater. 2017, 6, 1601013.
[17]
Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.
[18]
Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.
[19]
Acar, G.; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479.
[20]
Archana, V.; Xia, Y.; Fang, R. Y.; kumar, G. G. Hierarchical CuO/ NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707-6719.
[21]
Zhang, Y.; Li, N.; Xiang, Y. J.; Wang, D. B.; Zhang, P.; Wang, Y. Y.; Lu, S.; Xu, R. Q.; Zhao, J. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 2020, 156, 506-513.
[22]
Kim, J.; Campbell, A. S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163-170.
[23]
Ashley, B. K.; Brown, M. S.; Park, Y.; Kuan, S.; Koh, A. Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosens. Bioelectron. 2019, 132, 343-351.
[24]
Tur-García, E. L.; Davis, F.; Collyer, S. D.; Holmes, J. L.; Barr, H.; Higson, S. P. J. Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sens. Actuators B: Chem. 2017, 242, 502-510.
[25]
Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363-371.
[26]
Liang, T. T.; Zou, L.; Guo, X. G.; Ma, X. Q.; Zhang, C. K.; Zou, Z.; Zhang, Y. H.; Hu, F. X.; Lu, Z. S.; Tang, K. L. et al. Rising mesopores to realize direct electrochemistry of glucose oxidase toward highly sensitive detection of glucose. Adv. Funct. Mater. 2019, 29, 1903026.
[27]
Kim, K.; Lee, C. H.; Park, C. B. Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chem. Soc. Rev. 2020, 49, 5446-5472.
[28]
Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11, 22152-22171.
[29]
Falahati, M.; Attar, F.; Sharifi, M.; Saboury, A. A.; Salihi, A.; Aziz, F. M.; Kostova, I.; Burda, C.; Priecel, P.; Lopez-Sanchez, J. A. et al. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim. Biophys. Acta (BBA) -Gen. Subj. 2020, 1864, 129435.
[30]
Zhang, B.; Gao, P. X. Metal oxide nanoarrays for chemical sensing: A review of fabrication methods, sensing modes, and their inter-correlations. Front. Mater. 2019, 6, 55.
[31]
Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019, 34, 043001.
[32]
Lee, C. W.; Suh, J. M.; Jang, H. W. Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid. Front. Chem. 2019, 7, 708.
[33]
Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387-440.
[34]
Weltin, A.; Kieninger, J.; Urban, G. A. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal. Bioanal. Chem. 2016, 408, 4503-4521.
[35]
Liu, Y.; Matharu, Z.; Howland, M. C.; Revzin, A.; Simonian, A. L. Affinity and enzyme-based biosensors: Recent advances and emerging applications in cell analysis and point-of-care testing. Anal. Bioanal. Chem. 2012, 404, 1181-1196.
[36]
Choi, M. M. F. Progress in enzyme-based biosensors using optical transducers. Microchim. Acta 2004, 148, 107-132.
[37]
Babu, V. R. S.; Kumar, M. A.; Karanth, N. G.; Thakur, M. S. Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications. Biosens. Bioelectron. 2004, 19, 1337-1341.
[38]
Lv, Z. M.; Wang, H. Y.; Chen, C. L.; Yang, S. M.; Chen, L.; Alsaedi, A.; Hayat, T. Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J. Colloid Interface Sci. 2019, 537, A1-A10.
[39]
Kokkinos, C.; Economou, A.; Pournara, A.; Manos, M.; Spanopoulos, I.; Kanatzidis, M.; Tziotzi, T.; Petkov, V.; Margariti, A.; Oikonomopoulos, P. et al. 3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sens. Actuators B: Chem. 2020, 321, 128508.
[40]
Li, Y.; Xie, M. W.; Zhang, X. P.; Liu, Q.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Sun, X. P. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B: Chem. 2019, 278, 126-132.
[41]
Yang, Y. M.; Xia, F.; Yang, Y.; Gong, B. Y.; Xie, A. J.; Shen, Y. H.; Zhu, M. Z. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B 2017, 5, 8600-8606.
[42]
Qiao, Y. X.; Liu, Q.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Lu, W. B.; Sun, X. P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 2020, 8, 5411-5415.
[43]
Chen, D. M.; Zhang, N. N.; Liu, C. S.; Du, M. Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. J. Mater. Chem. C 2017, 5, 2311-2317.
[44]
Yu, H. H.; Li, J.; Yang, Y.; Li, X.; Su, Z. M.; Sun, J. Near-infrared (NIR-II) luminescence for the detection of cyclotetramethylene tetranitramine based on stable Nd-MOF. J. Solid State Chem. 2021, 294, 121789.
[45]
Cui, Y.; Chen, F.; Yin, X. B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron. 2019, 135, 208-215.
[46]
Huang, N. H.; Li, R. T.; Fan, C.; Wu, K. Y.; Zhang, Z.; Chen, J. X. Rapid sequential detection of Hg2+ and biothiols by a probe DNA— MOF hybrid sensory system. J. Inorg. Biochem. 2019, 197, 110690.
[47]
Lestari, W. W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T. Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release. Mater. Chem. Phys. 2018, 204, 141-146.
[48]
Cui, S. Q.; Marandi, A.; Lebourleux, G.; Thimon, M.; Bourdon, M.; Chen, C. B.; Severino, M. I.; Steggles, V.; Nouar, F.; Serre, C. Heat properties of a hydrophilic carboxylate-based MOF for water adsorption applications. Appl. Therm. Eng. 2019, 161, 114135.
[49]
Siemensmeyer, K.; Peeples, C. A.; Tholen, P.; Schmitt, F. J.; Çoşut, B.; Hanna, G.; Yücesan, G. Phosphonate metal-organic frameworks: A novel family of semiconductors. Adv. Mater. 2020, 32, 2000474.
[50]
Levenson, D. A.; Zhang, J. F.; Gelfand, B. S.; Kammampata, S. P.; Thangadurai, V.; Shimizu, G. K. H. Particle size dependence of proton conduction in a cationic lanthanum phosphonate MOF. Dalton Trans. 2020, 49, 4022-4029.
[51]
Wang, Y. W.; Nan, L. J.; Jiang, Y. R.; Fan, M. F.; Chen, J.; Yuan, P. X.; Wang, A. J.; Feng, J. J. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection. Analyst 2020, 145, 2758-2766.
[52]
Cognet, M.; Gutel, T.; Gautier, R.; Le Goff, X. F.; Mesbah, A.; Dacheux, N.; Carboni, M.; Meyer, D. Pillared sulfonate-based metal-organic framework as negative electrode for Li-ion batteries. Mater. Lett. 2019, 236, 73-76.
[53]
Hoskins, B. F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962-5964.
[54]
Sud, D.; Kaur, G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron 2021, 193, 114897.
[55]
Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K. H.; Deep, A. An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 2018, 6, 14992-15009.
[56]
Huang, Q. Q.; Lin, Y. J.; Zheng, R.; Deng, W. H.; Kashi, C.; Kumar, P. N.; Wang, G. E.; Xu, G. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB. Inorg. Chem. Commun. 2019, 105, 119-124.
[57]
Xie, X. X.; Yang, Y. C.; Dou, B. H.; Li, Z. F.; Li, G. Proton conductive carboxylate-based metal-organic frameworks. Coord. Chem. Rev. 2020, 403, 213100.
[58]
Li, A. L.; Gao, Q.; Xu, J.; Bu, X. H. Proton-conductive metal-organic frameworks: Recent advances and perspectives. Coord. Chem. Rev. 2017, 344, 54-82.
[59]
Sadakiyo, M.; Kasai, H.; Kato, K.; Takata, M.; Yamauchi, M. Design and synthesis of hydroxide ion-conductive metal-organic frameworks based on salt inclusion. J. Am. Chem. Soc. 2014, 136, 1702-1705.
[60]
Guo, M.; Cai, H. L.; Xiong, R. G. Ferroelectric metal organic framework (MOF). Inorg. Chem. Commun. 2010, 13, 1590-1598.
[61]
Bazaga-García, M.; Papadaki, M.; Colodrero, R. M. P.; Olivera-Pastor, P.; Losilla, E. R.; Nieto-Ortega, B.; Aranda, M. Á. G.; Choquesillo-Lazarte, D.; Cabeza, A.; Demadis, K. D. Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem. Mater. 2015, 27, 424-435.
[62]
Liu, S. J.; Cao, C.; Yang, F.; Yu, M. H.; Yao, S. L.; Zheng, T. F.; He, W. W.; Zhao, H. X.; Hu, T. L.; Bu, X. H. High proton conduction in two Coii and Mnii anionic metal-organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst. Growth Des. 2016, 16, 6776-6780.
[63]
Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012, 112, 1034-1054.
[64]
Yang, J.; Ma, Z. H.; Gao, W. X.; Wei, M. D. Layered structural co-based mof with conductive network frames as a new supercapacitor electrode. Chem.—Eur. J. 2017, 23, 631-636.
[65]
Wang, T.; Farajollahi, M.; Henke, S.; Zhu, T. T.; Bajpe, S. R.; Sun, S. J.; Barnard, J. S.; Lee, J. S.; Madden, J. D. W.; Cheetham, A. K. et al. Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Mater. Horiz. 2017, 4, 64-71.
[66]
Meng, X.; Wang, H. N.; Wang, L. S.; Zou, Y. H.; Zhou, Z. Y. Enhanced proton conductivity of a MOF-808 framework through anchoring organic acids to the zirconium clusters by post-synthetic modification. CrystEngComm 2019, 21, 3146-3150.
[67]
Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276-280.
[68]
Feng, S. M.; Zhang, X. L.; Shi, D. Y.; Wang, Z. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front. Chem. Sci. Eng. 2021, 15, 221-237.
[69]
Winarta, J.; Shan, B. H.; Mcintyre, S. M.; Ye, L.; Wang, C.; Liu, J. C.; Mu, B. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst. Growth Des. 2020, 20, 1347-1362.
[70]
Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem., Int. Ed. 2007, 46, 463-466.
[71]
Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. L. Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 2015, 281, 669-677.
[72]
Maksimchuk, N. V.; Kholdeeva, O. A.; Kovalenko, K. A.; Fedin, V. P. MIL-101 supported polyoxometalates: Synthesis, characterization, and catalytic applications in selective liquid-phase oxidation. Isr. J. Chem. 2011, 51, 281-289.
[73]
Maksimchuk, N. V.; Zalomaeva, O. V.; Skobelev, I. Y.; Kovalenko, K. A.; Fedin, V. P.; Kholdeeva, O. A. Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proc. R. Soc. A: Math., Phys. Eng. Sci. 2012, 468, 2017-2034.
[74]
Gao, C. Y.; Tian, H. R.; Ai, J.; Li, L. J.; Dang, S.; Lan, Y. Q.; Sun, Z. M. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. Chem. Commun. 2016, 52, 11147-11150.
[75]
DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 2017, 31, 2024-2032.
[76]
Xue, D. X.; Wang, Q.; Bai, J. F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 2019, 378, 2-16.
[77]
Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887-5903.
[78]
Wang, T. S.; Gao, L. J.; Hou, J. W.; Herou, S. J. A.; Griffiths, J. T.; Li, W. W.; Dong, J. H.; Gao, S.; Titirici, M. M.; Kumar, R. V. et al. Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 2019, 10, 1340.
[79]
Bhadra, B. N.; Vinu, A.; Serre, C.; Jhung, S. H. MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Mater. Today 2019, 25, 88-111.
[80]
Jiang, K.; Zhang, L.; Hu, Q.; Zhao, D.; Xia, T. F.; Lin, W. X.; Yang, Y. Y.; Cui, Y. J.; Yang, Y.; Qian, G. D. Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 2016, 4, 6398-6401.
[81]
Li, H. Y.; Lv, N. N.; Li, X.; Liu, B. T.; Feng, J.; Ren, X. H.; Guo, T.; Chen, D. W.; Stoddart, J. F.; Gref, R. et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 2017, 9, 7454-7463.
[82]
Sun, Y. J.; Zheng, L. W.; Yang, Y.; Qian, X.; Fu, T.; Li, X. W.; Yang, Z. Y.; Yan, H.; Cui, C.; Tan, W. H. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103.
[83]
Kim, K. J.; Lu, P.; Culp, J. T.; Ohodnicki, P. R. Metal-organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform. ACS Sens. 2018, 3, 386-394.
[84]
Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789-2798.
[85]
Yan, B. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. J. Mater. Chem. C 2019, 7, 8155-8175.
[86]
Wang, J. H.; Fan, Y. D.; Lee, H. W.; Yi, C. Q.; Cheng, C. M.; Zhao, X.; Yang, M. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: Size-controlled synthesis and application for highly selective colorimetric sensing of iron(III) in aqueous solution. ACS Appl. Nano Mater. 2018, 1, 3747-3753.
[87]
He, H. Y.; Collins, D.; Dai, F. N.; Zhao, X. L.; Zhang, G. Q.; Ma, H. Q.; Sun, D. F. Construction of metal-organic frameworks with 1D chain, 2D grid, and 3D porous framework based on a flexible imidazole ligand and rigid benzenedicarboxylates. Cryst. Growth Des. 2010, 10, 895-902.
[88]
Bataille, T.; Bracco, S.; Comotti, A.; Costantino, F.; Guerri, A.; Ienco, A.; Marmottini, F. Solvent dependent synthesis of micro- and nano-crystalline phosphinate based 1D tubular MOF: Structure and CO2 adsorption selectivity. CrystEngComm 2012, 14, 7170-7173.
[89]
Zhang, Y. X.; Li, B. X.; Lin, H.; Ma, Z. J.; Wu, X. T.; Zhu, Q. L. Impressive second harmonic generation response in a novel phase-matchable NLO-active MOF derived from achiral precursors. J. Mater. Chem. C 2019, 7, 6217-6221.
[90]
Kondo, A.; Noguchi, H.; Ohnishi, S.; Kajiro, H.; Tohdoh, A.; Hattori, Y.; Xu, W. C.; Tanaka, H.; Kanoh, H.; Kaneko, K. Novel expansion/ shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett. 2006, 6, 2581-2584.
[91]
Cheng, J. Y.; Chen, S. M.; Chen, D.; Dong, L. B.; Wang, J. J.; Zhang, T. L.; Jiao, T. P.; Liu, B.; Wang, H.; Kai, J. J. et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A 2018, 6, 20254-20266.
[92]
Tan, B.; Zhao, H. M.; Wu, W. H.; Liu, X.; Zhang, Y. B.; Quan, X. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 2017, 9, 18699-18710.
[93]
Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.
[94]
Chen, X.; Lu, Y.; Dong, J. J.; Ma, L.; Yi, Z. R.; Wang, Y.; Wang, L. J.; Wang, S.; Zhao, Y.; Huang, J. et al. Ultrafast in situ synthesis of large-area conductive metal-organic frameworks on substrates for flexible chemiresistive sensing. ACS Appl. Mater. Interfaces 2020, 12, 57235-57244.
[95]
Kumar, A.; Banerjee, K.; Foster, A. S.; Liljeroth, P. Two-dimensional band structure in honeycomb metal-organic frameworks. Nano Lett. 2018, 18, 5596-5602.
[96]
Wang, Z. Y.; Liu, T.; Asif, M.; Yu, Y.; Wang, W.; Wang, H. T.; Xiao, F.; Liu, H. F. Rimelike structure-inspired approach toward in situ-oriented self-assembly of hierarchical porous MOF films as a sweat biosensor. ACS Appl. Mater. Interfaces 2018, 10, 27936-27946.
[97]
Gnanasekaran, G.; Balaguru, S.; Arthanareeswaran, G.; Das, D. B. Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep. Sci. Technol. 2019, 54, 434-446.
[98]
Song, L.; Wang, Y. J.; Chai, W. X. A diamond-type metal-organic framework based on nano-sized [Cu84-I)6(PPh3)4]2+ clusters and cyanide-ion linkers: Design, structure and luminescent property. Inorg. Chem. Commun. 2019, 104, 190-196.
[99]
Chen, Y. Q.; Zheng, L.; Fu, Y. Y.; Zhou, R. H.; Song, Y. H.; Chen, S. H. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 85917-85923.
[100]
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[101]
Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176-182.
[102]
Rosales-Vázquez, L. D.; Rodríguez, I. J. B.; Hernández-Ortega, S.; Sánchez-Mendieta, V.; Vilchis-Nestor, A. R.; de Jesús Cázares-Marinero, J.; Dorazco-González, A. Structure of a luminescent MOF-2 derivative with a core of Zn(II)-terephthalate-isoquinoline and its application in sensing of xylenes. Crystals 2020, 10, 344.
[103]
Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
[104]
Sarawade, P.; Tan, H.; Anjum, D.; Cha, D.; Polshettiwar, V. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres. ChemSusChem 2014, 7, 529-535.
[105]
Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016-15021.
[106]
Oliveira, L. C. A.; Petkowicz, D. I.; Smaniotto, A.; Pergher, S. B. C. Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water. Water Res. 2004, 38, 3699-3704.
[107]
Whiting, G. T.; Grondin, D.; Stosic, D.; Bennici, S.; Auroux, A. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption. Solar Energy Mater. Solar Cells 2014, 128, 289-295.
[108]
Sowunmi, A. R.; Folayan, C. O.; Anafi, F. O.; Ajayi, O. A.; Omisanya, N. O.; Obada, D. O.; Dodoo-Arhin, D. Dataset on the comparison of synthesized and commercial zeolites for potential solar adsorption refrigerating system. Data in Brief 2018, 20, 90-95.
[109]
Feng, Y. C.; Meng, Y.; Li, F. X.; Lv, Z. P.; Xue, J. W. Synthesis of mesoporous LTA zeolites with large BET areas. J. Porous Mat. 2013, 20, 465-471.
[110]
Shulga, O. V.; Jefferson, K.; Khan, A. R.; D'Souza, V. T.; Liu, J. Y.; Demchenko, A. V.; Stine, K. J. Preparation and characterization of porous gold and its application as a platform for immobilization of acetylcholine esterase. Chem. Mater. 2007, 19, 3902-3911.
[111]
Cai, W. Y.; Xu, Q.; Zhao, X. N.; Zhu, J. J.; Chen, H. Y. Porous gold-nanoparticle-CaCO3 hybrid material: Preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry. Chem. Mater. 2006, 18, 279-284.
[112]
Nyce, G. W.; Hayes, J. R.; Hamza, A. V.; Satcher, J. H. Synthesis and characterization of hierarchical porous gold materials. Chem. Mater. 2007, 19, 344-346.
[113]
Kameoka, S.; Tsai, A. P. CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal. Lett. 2008, 121, 337-341.
[114]
Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L. Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 1999, 121, 7957-7958.
[115]
Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 2008, 20, 4883-4886.
[116]
Kumar, R. V.; Diamant, Y.; Gedanken, A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 2000, 12, 2301-2305.
[117]
Gao, W.; Dickinson, L.; Grozinger, C.; Morin, F. G.; Reven, L. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 1996, 12, 6429-6435.
[118]
Kamata, H.; Ueno, S. I.; Sato, N.; Naito, T. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Process. Technol. 2009, 90, 947-951.
[119]
Passe-Coutrin, N.; Altenor, S.; Cossement, D.; Jean-Marius, C.; Gaspard, S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microp. Mesop. Mater. 2008, 111, 517-522.
[120]
Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109-116.
[121]
Kacan, E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. J. Environ. Manage. 2016, 166, 116-123.
[122]
Zhu, W. Z.; Miser, D. E.; Chan, W. G.; Hajaligol, M. R. Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit. Mater. Chem. Phys. 2003, 82, 638-647.
[123]
Rashidi, A. M.; Akbarnejad, M. M.; Khodadadi, A. A.; Mortazavi, Y.; Ahmadpourd, A. Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO. Nanotechnology 2007, 18, 315605.
[124]
Zhao, B.; Liu, P.; Jiang, Y.; Pan, D. Y.; Tao, H. H.; Song, J. S.; Fang, T.; Xu, W. W. Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 2012, 198, 423-427.
[125]
Park, S.; An, J.; Potts, J. R.; Velamakanni, A.; Murali, S.; Ruoff, R. S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019-3023.
[126]
Upare, P. P.; Yoon, J. W.; Kim, M. Y.; Kang, H. Y.; Hwang, D. W.; Hwang, Y. K.; Kung, H. H.; Chang, J. S. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 2013, 15, 2935-2943.
[127]
Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 2011, 4, 2826-2830.
[128]
Chuang, C. H.; Kung, C. W. Metal-organic frameworks toward electrochemical sensors: Challenges and opportunities. Electroanalysis 2020, 32, 1885-1895.
[129]
Zhang, Z. M.; Huang, Y. C.; Ding, W. W.; Li, G. K. Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal. Chem. 2014, 86, 3533-3540.
[130]
Zhang, Y. W.; Li, Z.; Zhao, Q.; Zhou, Y. L.; Liu, H. W.; Zhang, X. X. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem. Commun. 2014, 50, 11504-11506.
[131]
Chang, N.; Gu, Z. Y.; Yan, X. P. Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J. Am. Chem. Soc. 2010, 132, 13645-13647.
[132]
Lin, H. Z.; Chen, H. M.; Shao, X.; Deng, C. H. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Microchim. Acta 2018, 185, 562.
[133]
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.
[134]
An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834-3840.
[135]
Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926-13929.
[136]
Vakili, R.; Gibson, E. K.; Chansai, S.; Xu, S. J.; Al-Janabi, N.; Wells, P. P.; Hardacre, C.; Walton, A.; Fan, X. L. Understanding the CO oxidation on Pt nanoparticles supported on MOFs by Operando XPS. ChemCatChem 2018, 10, 4238-4242.
[137]
Noh, T. H.; Lee, H.; Jang, J.; Jung, O. S. Organization and energy transfer of fused aromatic hydrocarbon guests within anion-confining nanochannel MOFs. Angew. Chem., Int. Ed. 2015, 54, 9284-9288.
[138]
Gong, M.; Yang, J.; Li, Y. S.; Zhuang, Q. X.; Gu, J. L. Substitution-type luminescent MOF sensor with built-in capturer for selective cholesterol detection in blood serum. J. Mater. Chem. C 2019, 7, 12674-12681.
[139]
Zhang, X.; Xu, Y. D.; Ye, B. X. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651-656.
[140]
Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H. C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28-45.
[141]
Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.
[142]
He, H. J.; Cui, Y. J.; Li, B.; Wang, B.; Jin, C. H.; Yu, J. C.; Yao, L. J.; Yang, Y.; Chen, B. L.; Qian, G. D. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 2019, 31, e1806897.
[143]
He, H. J.; Ma, E.; Cui, Y. J.; Yu, J. C.; Yang, Y.; Song, T.; Wu, C. D.; Chen, X. Y.; Chen, B. L.; Qian, G. D. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 2016, 7, 11087.
[144]
Dong, J.; Zhao, D.; Lu, Y.; Sun, W. Y. Photoluminescent metal-organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 2019, 7, 22744-22767.
[145]
Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.
[146]
Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232-9242.
[147]
Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.
[148]
Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889-8935.
[149]
Wibowo, A. C.; Vaughn, S. A.; Smith, M. D.; Loye, H. C. Z. Novel bismuth and lead coordination polymers synthesized with pyridine-2, 5-dicarboxylates: Two single component “white” light emitting phosphors. Inorg. Chem. 2010, 49, 11001-11008.
[150]
Chen, J.; Zhang, Q.; Liu, Z. F.; Wang, S. H.; Xiao, Y.; Li, R.; Xu, J. G.; Zhao, Y. P.; Zheng, F. K.; Guo, G. C. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene. Dalton Trans. 2015, 44, 10089-10096.
[151]
Moudam, O.; Kaeser, A.; Delavaux-Nicot, B.; Duhayon, C.; Holler, M.; Accorsi, G.; Armaroli, N.; Séguy, I.; Navarro, J.; Destruel, P. et al. Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem. Commun. (Camb.) 2007, 3077-3079.
[152]
Zhang, H. B.; Lin, P.; Shan, X. C.; Du, F. L.; Li, Q. P.; Du, S. W. An inorganic-organic composite framework with an unprecedented 3D heterometallic inorganic connectivity and white-light emission. Chem. Commun. 2013, 49, 2231-2233.
[153]
Tang, Y. Y.; Ding, C. X.; Ng, S. W.; Xie, Y. S. Syntheses, structures and photoluminescence of Zn(II), Ag(I), Cu(I) and Co(II) coordination polymers of a tetrapyridyl ligand. RSC Adv. 2013, 3, 18134-18141.
[154]
Chen, W.; Wang, J. Y.; Chen, C.; Yue, Q.; Yuan, H. M.; Chen, J. S.; Wang, S. N. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg. Chem. 2003, 42, 944-946.
[155]
Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Cui, C. P.; Hu, S. M.; Du, W. X.; Wu, L. M.; Zhang, H. H.; Sun, R. Q. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures. Inorg. Chem. 2002, 41, 1391-1396.
[156]
Fumanal, M.; Corminboeuf, C.; Smit, B.; Tavernelli, I. Optical absorption properties of metal-organic frameworks: Solid state versus molecular perspective. Phy. Chem. Chem. Phys. 2020, 22, 19512-19521.
[157]
Mathieu, E.; Sipos, A.; Demeyere, E.; Phipps, D.; Sakaveli, D.; Borbas, K. E. Lanthanide-based tools for the investigation of cellular environments. Chem. Commun. 2018, 54, 10021-10035.
[158]
Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53-61.
[159]
Yang, X. G.; Lin, X. Q.; Zhao, Y. B.; Zhao, Y. S.; Yan, D. P. Lanthanide metal-organic framework microrods: Colored optical waveguides and chiral polarized emission. Angew. Chem., Int. Ed. 2017, 56, 7853-7857.
[160]
Zhao, S.-N.; Wang, G. B.; Poelman, D.; Van Der Voort, P. Luminescent lanthanide MOFs: A unique platform for chemical sensing. Materials 2018, 11, 572.
[161]
Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926-940.
[162]
Li, X. J.; Lu, S.; Tu, D. T.; Zheng, W.; Chen, X. Y. Luminescent lanthanide metal-organic framework nanoprobes: From fundamentals to bioapplications. Nanoscale 2020, 12, 15021-15035.
[163]
Xu, H.; Cao, C. S.; Kang, X. M.; Zhao, B. Lanthanide-based metal-organic frameworks as luminescent probes. Dalton Trans. 2016, 45, 18003-18017.
[164]
Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.
[165]
Yin, H.-Q.; Wang, X.-Y.; Yin, X.-B. Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 15166-15173.
[166]
Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.
[167]
Wu, S. Y.; Lin, Y. N.; Liu, J. W.; Shi, W.; Yang, G. M.; Cheng, P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor. Adv. Funct. Mater. 2018, 28, 1707169.
[168]
Lv, X. L.; Xie, L. H.; Wang, B.; Zhao, M. J.; Cui, Y. J.; Li, J. R. Flexible metal-organic frameworks for the wavelength-based luminescence sensing of aqueous pH. J. Mater. Chem. C 2018, 6, 10628-10639.
[169]
Guo, Z. Y.; Song, X. Z.; Lei, H. P.; Wang, H. L.; Su, S. Q.; Xu, H.; Qian, G. D.; Zhang, H. J.; Chen, B. L. A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. Chem. Commun. 2015, 51, 376-379.
[170]
Lian, X.; Yan, B. Diagnosis of penicillin allergy: A MOFs-based composite hydrogel for detecting β-lactamase in serum. Chem. Commun. 2019, 55, 241-244.
[171]
Li, X. J.; Zhou, S. Y.; Lu, S.; Tu, D. T.; Zheng, W.; Liu, Y.; Li, R. F.; Chen, X. Y. Lanthanide metal-organic framework nanoprobes for the in vitro detection of cardiac disease markers. ACS Appl. Mater. Interfaces 2019, 11, 43989-43995.
[172]
Zhao, H. X.; Shu, G.; Zhu, J. Y.; Fu, Y. Y.; Gu, Z.; Yang, D. Y. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 2019, 217, 119332.
[173]
Yang, X. G.; Lu, X. M.; Zhai, Z. M.; Zhao, Y.; Liu, X. Y.; Ma, L. F.; Zang, S. Q. Facile synthesis of a micro-scale MOF host-guest with long-lasting phosphorescence and enhanced optoelectronic performance. Chem. Commun. 2019, 55, 11099-11102.
[174]
Li, S. M.; Zheng, X. J.; Yuan, D. Q.; Ablet, A.; Jin, L. P. In situ formed white-light-emitting lanthanide-zinc-organic frameworks. Inorg. Chem. 2012, 51, 1201-1203.
[175]
Liu, Y.; Pan, M.; Yang, Q. Y.; Fu, L.; Li, K.; Wei, S. C.; Su, C. Y. Dual-emission from a single-phase eu-ag metal-organic framework: An alternative way to get white-light phosphor. Chem. Mater. 2012, 24, 1954-1960.
[176]
White, K. A.; Chengelis, D. A.; Gogick, K. A.; Stehman, J.; Rosi, N. L.; Petoud, S. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 2009, 131, 18069-18071.
[177]
Li, L. N.; Zhang, S. Q.; Xu, L. J.; Chen, Z. N.; Luo, J. H. Highly sensitized near-infrared luminescence in Ir-Ln heteronuclear coordination polymers via light-harvesting antenna of Ir(III) unit. J. Mater. Chem. C 2014, 2, 1698-1703.
[178]
Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33.
[179]
Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. A porous metal-organic framework assembled by [Cu30] nanocages: Serving as recyclable catalysts for CO2 fixation with aziridines. Adv. Sci. 2016, 3, 1600048.
[180]
Gao, W. Y.; Wojtas, L.; Ma, S. Q. A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions. Chem. Commun. 2014, 50, 5316-5318.
[181]
Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4- and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 6022-6027.
[182]
Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129-14135.
[183]
Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[184]
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[185]
Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294-1314.
[186]
Sun, W.; Wang, J. Z.; Zhang, G. N.; Liu, Z. L. A luminescent terbium MOF containing uncoordinated carboxyl groups exhibits highly selective sensing for Fe3+ ions. RSC Adv. 2014, 4, 55252-55255.
[187]
Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43, 6097-6115.
[188]
Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513-6519.
[189]
Ming, Y.; Purewal, J.; Yang, J.; Xu, C. C.; Soltis, R.; Warner, J.; Veenstra, M.; Gaab, M.; Müller, U.; Siegel, D. J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time. Langmuir 2015, 31, 4988-4995.
[190]
Todaro, M.; Buscarino, G.; Sciortino, L.; Alessi, A.; Messina, F.; Taddei, M.; Ranocchiari, M.; Cannas, M.; Gelardi, F. M. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 2016, 120, 12879-12889.
[191]
Al-Janabi, N.; Martis, V.; Servi, N.; Siperstein, F. R.; Fan, X. L. Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions. Chem. Eng. J. 2018, 333, 594-602.
[192]
Miles, D. O.; Jiang, D. M; Burrows, A. D.; Halls, J. E.; Marken, F. Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem. Commun. 2013, 27, 9-13.
[193]
Qu, C.; Jiao, Y.; Zhao, B. T.; Chen, D. C.; Zou, R. Q.; Walton, K. S.; Liu, M. L. Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy 2016, 26, 66-73.
[194]
Li, Y. Z.; Huangfu, C.; Du, H. J.; Liu, W. B.; Li, Y. W.; Ye, J. S. Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis. J. Electroanal. Chem. 2013, 709, 65-69.
[195]
Fernandes, D. M.; Barbosa, A. D. S.; Pires, J.; Balula, S. S.; Cunha-Silva, L.; Freire, C. Novel composite material polyoxovanadate@MIL-101(Cr): A highly efficient electrocatalyst for ascorbic acid oxidation. ACS Appl. Mater. Interfaces 2013, 5, 13382-13390.
[196]
Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C. Stable metal-organic frameworks with group 4 metals: Current status and trends. ACS Cent. Sci. 2018, 4, 440-450.
[197]
Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
[198]
Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 2016, 45, 5107-5134.
[199]
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
[200]
Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632-6640.
[201]
Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601-5638.
[202]
D’Alessandro, D. M.; Kanga, J. R. R.; Caddy, J. S. Towards conducting metal-organic frameworks. Aust. J. Chem. 2011, 64, 718-722.
[203]
Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566-3579.
[204]
Medina, D. D.; Mähringer, A.; Bein, T. Electroactive metalorganic frameworks. Isr. J. Chem. 2018, 58, 1089-1101.
[205]
Kung, C. W.; Han, P. C.; Chuang, C. H.; Wu, K. C. W. Electronically conductive metal-organic framework-based materials. APL Mater. 2019, 7, 110902.
[206]
Deng, X. L.; Hu, J. Y.; Luo, J. Y.; Liao, W. M.; He, J. Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Top. Curr. Chem. 2020, 378, 27.
[207]
Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536-8580.
[208]
Souto, M.; Strutyński, K.; Melle-Franco, M.; Rocha, J. Electroactive organic building blocks for the chemical design of functional porous frameworks (MOFs and COFs) in electronics. Chem.—Eur. J. 2020, 26, 10912-10935.
[209]
Leong, C. F.; Usov, P. M.; D’Alessandro, D. M. Intrinsically conducting metal-organic frameworks. MRS Bulletin 2016, 41, 858-864.
[210]
Han, S. B.; Warren, S. C.; Yoon, S. M.; Malliakas, C. D.; Hou, X. L.; Wei, Y. H.; Kanatzidis, M. G.; Grzybowski, B. A. Tunneling electrical connection to the interior of metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 8169-8175.
[211]
Kung, C. W.; Platero-Prats, A. E.; Drout, R. J.; Kang, J.; Wang, T. C.; Audu, C. O.; Hersam, M. C.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. Inorganic “conductive glass” approach to rendering mesoporous metal-organic frameworks electronically conductive and chemically responsive. ACS Appl. Mater. Interfaces 2018, 10, 30532-30540.
[212]
Dhara, B.; Nagarkar, S. S.; Kumar, J.; Kumar, V.; Jha, P. K.; Ghosh, S. K.; Nair, S.; Ballav, N. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. J. Phys. Chem. Lett. 2016, 7, 2945-2950.
[213]
Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561-2563.
[214]
Pan, L.; Liu, G.; Shi, W. X.; Shang, J.; Leow, W. R.; Liu, Y. Q.; Jiang, Y.; Li, S. Z.; Chen, X. D.; Li, R. W. Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nat. Commun. 2018, 9, 3813.
[215]
Lee, D. Y.; Kim, E. K.; Shrestha, N. K.; Boukhvalov, D. W.; Lee, J. K.; Han, S. H. Charge transfer-induced molecular hole doping into thin film of metal-organic frameworks. ACS Appl. Mater. Interfaces 2015, 7, 18501-18507.
[216]
Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66-69.
[217]
Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A. R. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 2013, 42, 426-429.
[218]
Rovira, C. Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs). Chem. Rev. 2004, 104, 5289-5318.
[219]
Iyoda, M.; Hasegawa, M.; Miyake, Y. Bi-TTF, Bis-TTF, and related TTF oligomers. Chem. Rev. 2004, 104, 5085-5114.
[220]
Frère, P.; Skabara, P. J. Salts of extended tetrathiafulvalene analogues: Relationships between molecular structure, electrochemical properties and solid state organisation. Chem. Soc. Rev. 2005, 34, 69-98.
[221]
Panda, T.; Banerjee, R. High charge carrier mobility in two dimensional indium (III) isophthalic acid based frameworks. Proc. Natl. Acad. Sci., India, Sect. A: Phys. Sci. 2014, 84, 331-336.
[222]
Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 1774-1777.
[223]
Zhou, Y.; Hu, Q.; Yu, F.; Ran, G. Y.; Wang, H. Y.; Shepherd, N. D.; D’Alessandro, D. M.; Kurmoo, M.; Zuo, J. L. A metal-organic framework based on a nickel bis (dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor. J. Am. Chem. Soc. 2020, 142, 20313-20317.
[224]
Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X. F.; O'Keeffe, M.; Yaghi, O. M. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem.—Eur. J. 2012, 18, 10595-10601.
[225]
Park, J. G.; Aubrey, M. L.; Oktawiec, J.; Chakarawet, K.; Darago, L. E.; Grandjean, F.; Long, G. J.; Long, J. R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 2018, 140, 8526-8534.
[226]
Xie, L. S.; Sun, L.; Wan, R. M.; Park, S. S.; DeGayner, J. A.; Hendon, C. H.; Dincă, M. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework. J. Am. Chem. Soc. 2018, 140, 7411-7414.
[227]
Yan, Z.; Li, M.; Gao, H. L.; Huang, X. C.; Li, D. High-spin versus spin-crossover versus low-spin: Geometry intervention in cooperativity in a 3D polymorphic iron(II)-tetrazole MOFs system. Chem. Commun. 2012, 48, 3960-3962.
[228]
Wang, X.; Qin, T.; Bao, S. S.; Zhang, Y. C.; Shen, X.; Zheng, L. M.; Zhu, D. R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ ions. J. Mater. Chem. A 2016, 4, 16484-16489.
[229]
Li, C.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater. Lett. 2020, 2, 779-797.
[230]
Jin, Z. W.; Yan, J.; Huang, X.; Xu, W.; Yang, S. Y.; Zhu, D. B.; Wang, J. Z. Solution-processed transparent coordination polymer electrode for photovoltaic solar cells. Nano Energy 2017, 40, 376-381.
[231]
Jia, H. X.; Yao, Y. C.; Zhao, J. T.; Gao, Y. Y.; Luo, Z. L.; Du, P. W. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A 2018, 6, 1188-1195.
[232]
Yang, C. Q.; Dong, R. H.; Wang, M.; Petkov, P. S.; Zhang, Z. T.; Wang, M. C.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z. Q. et al. A semiconducting layered metal-organic framework magnet. Nat. Commun. 2019, 10, 3260.
[233]
Wang, F. X.; Liu, Z. C.; Yang, C. Q.; Zhong, H. X.; Nam, G.; Zhang, P. P.; Dong, R. H.; Wu, Y. P.; Cho, J.; Zhang, J. et al. Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 2020, 32, 1905361.
[234]
Meng, Z.; Aykanat, A.; Mirica, K. A. Welding metallophthalocyanin es into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 2019, 141, 2046-2053.
[235]
Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677-10682.
[236]
Ko, M.; Mendecki, L.; Eagleton, A. M.; Durbin, C. G.; Stolz, R. M.; Meng, Z.; Mirica, K. A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717-11733.
[237]
Li, S. M.; Tan, L. F.; Meng, X. W. Nanoscale metal-organic frameworks: Synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv. Funct. Mater. 2020, 30, 1908924.
[238]
Sajid, M. Toxicity of nanoscale metal organic frameworks: A perspective. Environ. Sci. Pollut. Res. 2016, 23, 14805-14807.
[239]
Kumar, P.; Anand, B.; Tsang, Y. F.; Kim, K. H.; Khullar, S.; Wang, B. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environ. Res. 2019, 176, 108488.
[240]
Suresh, K.; Matzger, A. J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem., Int. Ed. 2019, 58, 16790-16794.
[241]
Sharanyakanth, P. S.; Mahendran, R. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci. Technol. 2020, 104, 102-116.
[242]
Grape, E. S.; Flores, J. G.; Hidalgo, T.; Martínez-Ahumada, E.; Gutiérrez-Alejandre, A.; Hautier, A.; Williams, D. R.; O’Keeffe, M.; Öhrström, L.; Willhammar, T. et al. A robust and biocompatible bismuth ellagate MOF synthesized under green ambient conditions. J. Am. Chem. Soc. 2020, 142, 16795-16804.
[243]
Anderson, S. L.; Stylianou, K. C. Biologically derived metal organic frameworks. Coord. Chem. Rev. 2017, 349, 102-128.
[244]
Nadar, S. S.; Vaidya, L.; Maurya, S.; Rathod, V. K. Polysaccharide based metal organic frameworks (polysaccharide-MOF): A review. Coord. Chem. Rev. 2019, 396, 1-21.
[245]
Wang, H. S.; Wang, Y. H.; Ding, Y. Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2020, 2, 3788-3797.
[246]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2, 262-271.
[247]
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1-9.
[248]
Moghimi, S. M. Mechanisms of splenic clearance of blood cells and particles: Towards development of new splenotropic agents. Adv. Drug Deliv. Rev. 1995, 17, 103-115.
[249]
Banerjee, T.; Mitra, S.; Singh, A. K.; Sharma, R. K.; Maitra, A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 2002, 243, 93-105.
[250]
Dang, Y. T.; Dang, M. H. D.; Mai, N. X. D.; Nguyen, L. H. T.; Phan, T. B.; Le, H. V.; Doan, T. L. H. Room temperature synthesis of biocompatible nano Zn-MOF for the rapid and selective adsorption of curcumin. J. Sci.: Adv. Mater. Dev. 2020, 5, 560-565.
[251]
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.
[252]
Gao, X. C.; Cui, R. X.; Ji, G. F.; Liu, Z. L. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 2018, 10, 6205-6211.
[253]
Rocío-Bautista, P.; Pino, V.; Ayala, J. H.; Ruiz-Pérez, C.; Vallcorba, O.; Afonso, A. M.; Pasán, J. A green metal-organic framework to monitor water contaminants. RSC Adv. 2018, 8, 31304-31310.
[254]
Qian, L. W.; Lei, D.; Duan, X.; Zhang, S. F.; Song, W. Q.; Hou, C.; Tang, R. H. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr. Polym. 2018, 192, 44-51.
[255]
Cervantes, B.; López-Huerta, F.; Vega, R.; Hernández-Torres, J.; García-González, L.; Salceda, E.; Herrera-May, A. L.; Soto, E. Cytotoxicity evaluation of anatase and rutile TiO2 thin films on CHO-K1 cells in vitro. Materials 2016, 9, 619.
[256]
Chen, D. Q.; Yang, D. Z.; Dougherty, C. A.; Lu, W. F.; Wu, H. W.; He, X. R.; Cai, T.; Van Dort, M. E.; Ross, B. D.; Hong, H. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano 2017, 11, 4315-4327.
[257]
Jarai, B. M.; Stillman, Z.; Attia, L.; Decker, G. E.; Bloch, E. D.; Fromen, C. A. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl. Mater. Interfaces 2020, 12, 38989-39004.
[258]
Wu, Q.; Niu, M.; Chen, X. W.; Tan, L. F.; Fu, C. H.; Ren, X. L.; Ren, J.; Li, L. F.; Xu, K.; Zhong, H. S. et al. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 2018, 162, 132-143.
[259]
Zhang, G. Y.; Zhuang, Y. H.; Shan, D.; Su, G. F.; Cosnier, S.; Zhang, X. J. Zirconium-based porphyrinic metal-organic framework (PCN-222): Enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 2016, 88, 11207-11212.
[260]
Cai, H.; Lu, W. G.; Yang, C.; Zhang, M.; Li, M.; Che, C. M.; Li, D. Tandem förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Adv. Opt. Mater. 2019, 7, 1801149.
[261]
Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207-221.
[262]
Li, Z.; Peng, Y.; Pang, X. C.; Tang, B. Potential therapeutic effects of Mg/HCOOH metal organic framework on relieving osteoarthritis. ChemMedChem 2020, 15, 13-16.
[263]
Wang, J. H.; Fan, Y. D.; Tan, Y. H.; Zhao, X.; Zhang, Y.; Cheng, C. M.; Yang, M. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-β peptide. ACS Appl. Mater. Interfaces 2018, 10, 36615-36621.
[264]
Su, F. F.; Jia, Q. J.; Li, Z. Z.; Wang, M. H.; He, L. H.; Peng, D. L.; Song, Y. P.; Zhang, Z. H.; Fang, S. M. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery. Microp. Mesop. Mater. 2019, 275, 152-162.
[265]
Cheng, Q.; Yu, W. Y.; Ye, J. J.; Liu, M. D.; Liu, W. L.; Zhang, C.; Zhang, C.; Feng, J.; Zhang, X. Z. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 2019, 224, 119500.
[266]
Zhu, W.; Zhang, L.; Yang, Z.; Liu, P.; Wang, J.; Cao, J. G.; Shen, A. G.; Xu, Z. S.; Wang, J. An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy. Chem. Eng. J. 2019, 358, 969-979.
[267]
Sene, S.; Marcos-Almaraz, M. T.; Menguy, N.; Scola, J.; Volatron, J.; Rouland, R.; Grenèche, J. M.; Miraux, S.; Menet, C.; Guillou, N. et al. Maghemite-nanoMIL-100(Fe) bimodal nanovector as a platform for image-guided therapy. Chem 2017, 3, 303-322.
[268]
Hu, Q.; Yu, J. C.; Liu, M.; Liu, A. P.; Dou, Z. S.; Yang, Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem. 2014, 57, 5679-5685.
[269]
Zhang, W.; Lu, J.; Gao, X. N.; Li, P.; Zhang, W.; Ma, Y.; Wang, H.; Tang, B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem., Int. Ed. 2018, 57, 4891-4896.
[270]
Zhong, X. F.; Zhang, Y. T.; Tan, L.; Zheng, T.; Hou, Y. Y.; Hong, X. Y.; Du, G. S.; Chen, X. Y.; Zhang, Y. D.; Sun, X. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81-92.
[271]
Cai, M. R.; Qin, L. Y.; You, L. T.; Yao, Y.; Wu, H. M.; Zhang, Z. Q.; Zhang, L.; Yin, X. B.; Ni, J. Functionalization of MOF-5 with mono-substituents: Effects on drug delivery behavior. RSC Adv. 2020, 10, 36862-36872.
[272]
Liu, W.; Yan, Z. J.; Zhang, Z. D.; Zhang, Y. X.; Cai, G. Y.; Li, Z. Y. Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application. J. Alloys Compd. 2019, 788, 705-711.
[273]
Tan, G. Z.; Zhong, Y. T.; Yang, L. L.; Jiang, Y. D.; Liu, J. Q.; Ren, F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem. Eng. J. 2020, 390, 124446.
[274]
Chen, Y. C.; Lin, K. Y. A.; Chen, K. F.; Jiang, X. Y.; Lin, C. H. In vitro renal toxicity evaluation of copper-based metal-organic framework HKUST-1 on human embryonic kidney cells. Environ. Pollut. 2021, 273, 116528.
[275]
Xia, T. F.; Zhu, F. L.; Jiang, K.; Cui, Y. J.; Yang, Y.; Qian, G. D. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Trans. 2017, 46, 7549-7555.
[276]
Huang, S. Z.; Liu, S. S.; Zhang, H. J.; Han, Z.; Zhao, G.; Dong, X. Y.; Zang, S. Q. Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF. ACS Appl. Mater. Interfaces 2020, 12, 28720-28726.
[277]
Xu, X. Y.; Yan, B. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment. Dalton Trans. 2016, 45, 7078-7084.
[278]
Jiang, H. L.; Feng, D. W.; Wang, K. C.; Gu, Z. Y.; Wei, Z. W.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934-13938.
[279]
Barar, J.; Omidi, Y. Dysregulated pH in Tumor microenvironment checkmates cancer therapy. Bioimpacts 2013, 3, 149-162.
[280]
Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X. Y.; Ye, X. D.; Nie, S. M.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 2016, 10, 6753-6761.
[281]
Alfarouk, K. O.; Ahmed, S. B. M.; Ahmed, A.; Elliott, R. L.; Ibrahim, M. E.; Ali, H. S.; Wales, C. C.; Nourwali, I.; Aljarbou, A. N.; Bashir, A. H. H. et al. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers 2020, 12, 898.
[282]
Liu, H. P.; Wang, H. M.; Chu, T. S.; Yu, M. H.; Yang, Y. Y. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J. Mater. Chem. C 2014, 2, 8683-8690.
[283]
Chen, Y. Q.; Li, G. R.; Chang, Z.; Qu, Y. K.; Zhang, Y. H.; Bu, X. H. A Cu(I) metal-organic framework with 4-fold helical channels for sensing anions. Chem. Sci. 2013, 4, 3678-3682.
[284]
Ji, G. F.; Gao, X. C.; Zheng, T. X.; Guan, W. H.; Liu, H. T.; Liu, Z. L. Postsynthetic metalation metal-organic framework as a fluorescent probe for the ultrasensitive and reversible detection of PO43- ions. Inorg. Chem. 2018, 57, 10525-10532.
[285]
Abdelhamid, H. N.; Bermejo-Gómez, A.; Martín-Matute, B.; Zou, X. D. A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim. Acta 2017, 184, 3363-3371.
[286]
Zhao, X. L.; Tian, D.; Gao, Q.; Sun, H. W.; Xu, J.; Bu, X. H. A chiral lanthanide metal-organic framework for selective sensing of Fe(III) ions. Dalton Trans. 2016, 45, 1040-1046.
[287]
Zhao, D.; Liu, X. H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al-Resayes, S. I.; Lu, Y.; Sun, W. Y. Luminescent Cd(II)-organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics. J. Mater. Chem. A 2017, 5, 15797-15807.
[288]
Xu, H.; Gao, J. K.; Qian, X. F.; Wang, J. P.; He, H. J.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Qian, G. D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900-10905.
[289]
Wang, Z. Y.; Liu, T.; Jiang, L. P.; Asif, M.; Qiu, X. Y.; Yu, Y.; Xiao, F.; Liu, H. F. Assembling metal-organic frameworks into the fractal scale for sweat sensing. ACS Appl. Mater. Interfaces 2019, 11, 32310-32319.
[290]
Zhao, Z. H.; Huang, Y. J.; Liu, W. R.; Ye, F. G.; Zhao, S. L. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustain. Chem. Eng. 2020, 8, 4481-4488.
[291]
Wang, F.; Chen, X. Q.; Chen, L.; Yang, J. L.; Wang, Q. X. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel(II)-based MOF/carbon nanotubes composite. Mater. Sci. Eng.: C 2019, 96, 41-50.
[292]
Qu, S. M.; Li, Z.; Jia, Q. Detection of purine metabolite uric acid with picolinic-acid-functionalized metal-organic frameworks. ACS Appl. Mater. Interfaces 2019, 11, 34196-34202.
[293]
Ling, P. H.; Lei, J. P.; Zhang, L.; Ju, H. X. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 2015, 87, 3957-3963.
[294]
Ou, D.; Sun, D. P.; Liang, Z. X.; Chen, B. W.; Lin, X. G.; Chen, Z. G. A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sens. Actuators B: Chem. 2019, 285, 398-404.
[295]
Nery, E. W.; Kundys, M.; Jeleń, P. S.; Jönsson-Niedziółka, M. Electrochemical glucose sensing: Is there still room for improvement? Anal. Chem. 2016, 88, 11271-11282.
[296]
Holade, Y.; Lehoux, A.; Remita, H.; Kokoh, K. B.; Napporn, T. W. Au@Pt core-shell mesoporous nanoballs and nanoparticles as efficient electrocatalysts toward formic acid and glucose oxidation. J. Phys. Chem. C 2015, 119, 27529-27539.
[297]
Zhang, L.; Ye, C.; Li, X.; Ding, Y. R.; Liang, H. B.; Zhao, G. Y.; Wang, Y. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett. 2018, 10, 28.
[298]
Ma, W. J.; Jiang, Q.; Yu, P.; Yang, L. F.; Mao, L. Q. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 2013, 85, 7550-7557.
[299]
Khan, I. A.; Badshah, A.; Nadeem, M. A.; Haider, N.; Nadeem, M. A. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int. J. Hydrogen Energy 2014, 39, 19609-19620.
[300]
Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386-3401.
[301]
Zhao, Z. H.; Lin, T. R.; Liu, W. R.; Hou, L.; Ye, F. G.; Zhao, S. L. Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019, 219, 240-247.
[302]
Zhao, Z. H.; Pang, J. H.; Liu, W. R.; Lin, T. R.; Ye, F. G.; Zhao, S. L. A bifunctional metal organic framework of type Fe(III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. Microchim. Acta 2019, 186, 295.
[303]
Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096-22101.
[304]
Han, Y. H.; Tian, C. B.; Li, Q. H.; Du, S. W. Highly chemical and thermally stable luminescent EuxTb1-x MOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C 2014, 2, 8065-8070.
[305]
Thanh, T. D.; Balamurugan, J.; Lee, S. H.; Kim, N. H.; Lee, J. H. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 2016, 81, 259-267.
[306]
Ye, J. S.; Hong, B. D.; Wu, Y. S.; Chen, H. R.; Lee, C. L. Heterostructured palladium-platinum core-shell nanocubes for use in a nonenzymatic amperometric glucose sensor. Microchim. Acta 2016, 183, 3311-3320.
[307]
Juang, F. R.; Kao, C. Glucose sensing performance of CuO nanoparticles and indium tin oxide surface modification on potassium-doped ZnO nanorods. Thin Solid Films 2020, 708, 138114.
[308]
Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. B. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050-9053.
[309]
Zhao, Y. F.; Wan, M. Y.; Bai, J. P.; Zeng, H.; Lu, W. G.; Li, D. pH-Modulated luminescence switching in a Eu-MOF: Rapid detection of acidic amino acids. J. Mater. Chem. A 2019, 7, 11127-11133.
[310]
Zhang, W. Q.; Duan, D. W.; Liu, S. Q.; Zhang, Y. S.; Leng, L. P.; Li, X. L.; Chen, N.; Zhang, Y. P. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens. Bioelectron. 2018, 118, 129-136.
[311]
Liu, C. S.; Zhang, Z. H.; Chen, M.; Zhao, H.; Duan, F. H.; Chen, D. M.; Wang, M. H.; Zhang, S.; Du, M. Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. Chem. Commun. 2017, 53, 3941-3944.
[312]
Qin, L.; Lin, L. X.; Fang, Z. P.; Yang, S. P.; Qiu, G. H.; Chen, J. X.; Chen, W. H. A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: A sensing platform for Ebolavirus RNA sequences. Chem. Commun. 2016, 52, 132-135.
[313]
Zhang, H. T.; Zhang, J. W.; Huang, G.; Du, Z. Y.; Jiang, H. L. An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem. Commun. 2014, 50, 12069-12072.
[314]
Wang, H.; Jian, Y. N.; Kong, Q. K.; Liu, H. Y.; Lan, F. F.; Liang, L. L.; Ge, S. G.; Yu, J. H. Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sens. Actuators B: Chem. 2018, 257, 561-569.
[315]
Du, L. P.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. S. Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sens. Actuators B: Chem. 2019, 301, 127073.
[316]
Wang, M.; Hu, M.; Li, Z.; He, L.; Song, Y.; Jia, Q.; Zhang, Z.; Du, M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron. 2019, 142, 111536.
[317]
Wu, H.; Yildirim, T.; Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 2013, 4, 925-930.
[318]
Yuan, S.; Sun, X.; Pang, J.; Lollar, C.; Qin, J. S.; Perry, Z.; Joseph, E.; Wang, X.; Fang, Y.; Bosch, M. et al. PCN-250 under pressure: Sequential phase transformation and the implications for MOF densification. Joule 2017, 1, 806-815.
[319]
Ling, W.; Hao, Y. F.; Wang, H. J.; Xu, H.; Huang, X. A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology 2019, 30, 424002.
[320]
Babu, D. J.; He, G. W.; Villalobos, L. F.; Agrawal, K. V. Crystal engineering of metal-organic framework thin films for gas separations. ACS Sustain. Chem. Eng. 2019, 7, 49-69.
[321]
Szilágyi, P. Á.; Westerwaal, R. J.; van de Krol, R.; Geerlings, H.; Dam, B. Metal-organic framework thin films for protective coating of Pd-based optical hydrogen sensors. J. Mater. Chem. C 2013, 1, 8146-8155.
[322]
Yue, Y. F.; Mehio, N.; Binder, A. J.; Dai, S. Synthesis of metal-organic framework particles and thin films via nanoscopic metal oxide precursors. CrystEngComm 2015, 17, 1728-1735.
[323]
Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chem. Soc. Rev. 2011, 40, 1059-1080.
[324]
Jung, J. Y.; Karadas, F.; Zulfiqar, S.; Deniz, E.; Aparicio, S.; Atilhan, M.; Yavuz, C. T.; Han, S. M. Limitations and high pressure behavior of MOF-5 for CO2 capture. Phys. Chem. Chem. Phys. 2013, 15, 14319-14327.
[325]
Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2010, 107, 9938-9943.
[326]
Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films. Appl. Phys. Lett. 2012, 101, 101910.
[327]
Van de Voorde, B.; Ameloot, R.; Stassen, I.; Everaert, M.; De Vos, D.; Tan, J. C. Mechanical properties of electrochemically synthesised metal-organic framework thin films. J. Mater. Chem. C 2013, 1, 7716-7724.
[328]
Coudert, F. X. Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905-1916.
[329]
Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597-605.
[330]
Thornton, J. A.; Hoffman, D. W. Stress-related effects in thin films. Thin Solid Films 1989, 171, 5-31.
[331]
Numata, S. I.; Oohara, S.; Fujisaki, K.; Imaizumi, J. I.; Kinjo, N. Thermal expansion behavior of various aromatic polyimides. J. Appl. Polym. Sci. 1986, 31, 101-110.
[332]
Müller, A.; Wapler, M. C.; Wallrabe, U. A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS. Soft Matter 2019, 15, 779-784.
[333]
Coburn, J. C.; Boyd, R. H. Dielectric relaxation in poly (ethylene terephthalate). Macromolecules 1986, 19, 2238-2245.
[334]
Zhou, W.; Wu, H.; Yildirim, T.; Simpson, J. R.; Walker, A. R. H. Origin of the exceptional negative thermal expansion in metal-organic framework-5 Zn4O (1,4-benzenedicarboxylate)3. Phys. Rev. B 2008, 78, 054114.
[335]
Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.; Iversen, B. B. Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 2010, 114, 16181-16186.
[336]
Schneider, C.; Bodesheim, D.; Ehrenreich, M. G.; Crocellà, V.; Mink, J.; Fischer, R. A.; Butler, K. T.; Kieslich, G. Tuning the negative thermal expansion behavior of the metal-organic framework Cu3BTC2 by retrofitting. J. Am. Chem. Soc. 2019, 141, 10504-10509.
[337]
Wu, Y.; Kobayashi, A.; Halder, G. J.; Peterson, V. K.; Chapman, K. W.; Lock, N.; Southon, P. D.; Kepert, C. J. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. Angew. Chem., Int. Ed. 2008, 47, 8929-8932.
[338]
Lama, P.; Das, R. K.; Smith, V. J.; Barbour, L. J. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF. Chem. Commun. 2014, 50, 6464-6467.
[339]
Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185-3241.
[340]
Pan, L.; Ji, Z. H.; Yi, X. H.; Zhu, X. J.; Chen, X. X.; Shang, J.; Liu, G.; Li, R. W. Metal-organic framework nanofilm for mechanically flexible information storage applications. Adv. Funct. Mater. 2015, 25, 2677-2685.
[341]
Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11, 5438-5442.
[342]
Liu, Y. Q.; Wang, H.; Shi, W. X.; Zhang, W. N.; Yu, J. C.; Chandran, B. K.; Cui, C. L.; Zhu, B. W.; Liu, Z. Y.; Li, B. et al. Alcohol-mediated resistance-switching behavior in metal-organic framework-based electronic devices. Angew. Chem., Int. Ed. 2016, 55, 8884-8888.
[343]
Zhu, X. F.; Yuan, S.; Ju, Y. H.; Yang, J.; Zhao, C.; Liu, H. Water splitting-assisted electrocatalytic oxidation of glucose with a metal-organic framework for wearable nonenzymatic perspiration sensing. Anal. Chem. 2019, 91, 10764-10771.
[344]
Zhou, K.; Zhang, C.; Xiong, Z. Y.; Chen, H. Y.; Li, T.; Ding, G. L.; Yang, B. D.; Liao, Q. F.; Zhou, Y.; Han, S. T. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 2020, 30, 2001296.
[345]
Zhang, X.; Zhang, Q.; Yue, D.; Zhang, J.; Wang, J. T.; Li, B.; Yang, Y.; Cui, Y. J.; Qian, G. D. Flexible metal-organic framework-based mixed-matrix membranes: A new platform for H2S sensors. Small 2018, 14, 1801563.
[346]
Xu, X. Y.; Yan, B. A fluorescent wearable platform for sweat Cl- analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J. Mater. Chem. C 2018, 6, 1863-1869.
[347]
Xu, X. Y.; Yan, B.; Lian, X. Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale 2018, 10, 13722-13729.
[348]
Moghadam, B. H.; Hasanzadeh, M.; Simchi, A. Self-powered wearable piezoelectric sensors based on polymer nanofiber-metal-organic framework nanoparticle composites for arterial pulse monitoring. ACS Appl. Nano Mater. 2020, 3, 8742-8752.
[349]
Fu, X. L.; Dong, H. L.; Zhen, Y. G.; Hu, W. P. Solution-processed large-area nanocrystal arrays of metal-organic frameworks as wearable, ultrasensitive, electronic skin for health monitoring. Small 2015, 11, 3351-3356.
[350]
Wang, Y. G.; Chao, M. Y.; Wan, P. B.; Zhang, L. Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560.
[351]
Smith, M. K.; Mirica, K. A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 2017, 139, 16759-16767.
[352]
Rui, K.; Wang, X. S.; Du, M.; Zhang, Y.; Wang, Q. Q.; Ma, Z. Y.; Zhang, Q.; Li, D. S.; Huang, X.; Sun, G. Z. et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 2018, 10, 2837-2842.
[353]
Wang, Z. Y.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. F. Coffee ring-inspired approach toward oriented self-assembly of biomimetic murray MOFs as sweat biosensor. Small 2018, 14, 1802670.
[354]
Lewis, J. Material challenge for flexible organic devices. Mater. Today 2006, 9, 38-45.
[355]
Phan, H. P.; Zhong, Y. S.; Nguyen, T. K.; Park, Y.; Dinh, T.; Song, E. M.; Vadivelu, R. K.; Masud, M. K.; Li, J. H.; Shiddiky, M. J. A. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 2019, 13, 11572-11581.
[356]
Bai, W. B.; Yang, H. J.; Ma, Y. J.; Chen, H.; Shin, J.; Liu, Y. H.; Yang, Q. S.; Kandela, I.; Liu, Z. H.; Kang, S. K. et al. Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Adv. Mater. 2018, 30, 1801584.
[357]
Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542-E9549.
[358]
Zhou, M. X.; Wu, Z. Y.; Zhao, Y. C.; Yang, Q.; Ling, W.; Li, Y.; Xu, H.; Wang, C.; Huang, X. Droplets as carriers for flexible electronic devices. Adv. Sci. 2019, 6, 1901862.
[359]
Cheng, T.; Zhang, Y. Z.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349-3376.
[360]
Dai, W. T.; Xu, H.; Zhang, C. N.; Li, Y.; Pan, H. Z.; Wang, H. J.; Wei, G. F.; Huang, X. Flexible magnetoelectrical devices with intrinsic magnetism and electrical conductivity. Adv. Electron. Mater. 2019, 5, 1900111.
[361]
Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553.
[362]
Li, Y.; Qi, Z. J.; Yang, J. X.; Zhou, M. X.; Zhang, X.; Ling, W.; Zhang, Y. Y.; Wu, Z. Y.; Wang, H. J.; Ning, B. A. et al. Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv. Funct. Mater. 2019, 29, 1904977.
[363]
Bétard, A.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055-1083.
[364]
Falcaro, P.; Ricco, R.; Doherty, C. M.; Liang, K.; Hill, A. J.; Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513-5560.
[365]
Ruiz-Zambrana, C. L.; Malankowska, M.; Coronas, J. Metal organic framework top-down and bottom-up patterning techniques. Dalton Trans. 2020, 49, 15139-15148.
[366]
Yao, J. F.; Wang, H. T. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470-4493.
[367]
Usman, K. A. S.; Maina, J. W.; Seyedin, S.; Conato, M. T.; Payawan, L. M.; Dumée, L. F.; Razal, J. M. Downsizing metal-organic frameworks by bottom-up and top-down methods. NPG Asia Mater. 2020, 12, 58.
[368]
Kundu, T.; Mitra, S.; Patra, P.; Goswami, A.; Díaz, D. D.; Banerjee, R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chem.—Eur. J. 2014, 20, 10514-10518.
[369]
Van Ngo, T.; Moussa, M.; Tung, T. T.; Coghlan, C.; Losic, D. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochim. Acta 2020, 329, 135104.
[370]
Sakaida, S.; Otsubo, K.; Sakata, O.; Song, C.; Fujiwara, A.; Takata, M.; Kitagawa, H. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 2016, 8, 377-383.
[371]
Duan, J. J.; Sun, Y. T.; Chen, S.; Chen, X. J.; Zhao, C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation. J. Mater. Chem. A 2020, 8, 18810-18815.
[372]
Li, R.; Ren, X. Q.; Zhao, J. S.; Feng, X.; Jiang, X.; Fan, X. X.; Lin, Z. G.; Li, X. G.; Hu, C. W.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A 2014, 2, 2168-2173.
[373]
Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356-1359.
[374]
Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381-398.
[375]
Wang, Y. Z.; Chen, T.; Gao, X. F.; Liu, H. H.; Zhang, X. X. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization. Mater. Express 2017, 7, 491-499.
[376]
Malaki, M.; Maleki, A.; Varma, R. S. MXenes and ultrasonication. J. Mater. Chem. A 2019, 7, 10843-10857.
[377]
Seyedin, S.; Zhang, J. Z.; Usman, K. A. S.; Qin, S.; Glushenkov, A. M.; Yanza, E. R. S.; Jones, R. T.; Razal, J. M. Facile solution processing of stable mxene dispersions towards conductive composite fibers. Glob. Chall. 2019, 3, 1900037.
[378]
Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 2011, 47, 8436-8438.
[379]
Quah, H. S.; Ng, L. T.; Donnadieu, B.; Tan, G. K.; Vittal, J. J. Molecular scissoring: Facile 3D to 2D conversion of lanthanide metal organic frameworks via solvent exfoliation. Inorg. Chem. 2016, 55, 10851-10854.
[380]
Xu, L. L.; Wang, Y.; Xu, T. T.; Liu, S. J.; Tong, J.; Chu, R. R.; Hou, X. D.; Liu, B. Exfoliating polyoxometalate-encapsulating metal-organic framework into two-dimensional nanosheets for superior oxidative desulfurization. ChemCatChem 2018, 10, 5386-5390.
[381]
Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220-2227.
[382]
Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 2007, 19, 121-124.
[383]
Lv, D. F.; Chen, Y. W.; Li, Y. J.; Shi, R. F.; Wu, H. X.; Sun, X. J.; Xiao, J.; Xi, H. X.; Xia, Q. B.; Li, Z. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 2017, 62, 2030-2036.
[384]
Flügel, E. A.; Ranft, A.; Haase, F.; Lotsch, B. V. Synthetic routes toward MOF nanomorphologies. J. Mater. Chem. 2012, 22, 10119-10133.
[385]
Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11-23.
[386]
Wang, K.; Gu, J. W.; Yin, N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind. Eng. Chem. Res. 2017, 56, 1880-1887.
[387]
Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. (Camb.) 2008, 3642-3644.
[388]
Jung, D. W.; Yang, D. A.; Kim, J.; Kim, J.; Ahn, W. S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans. 2010, 39, 2883-2887.
[389]
Cheng, X. Q.; Zhang, A. F.; Hou, K. K.; Liu, M.; Wang, Y. X.; Song, C. S.; Zhang, G. L.; Guo, X. W. Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans. 2013, 42, 13698-13705.
[390]
Zhang, B. X.; Zhang, J. L.; Liu, C. C.; Sang, X. X.; Peng, L.; Ma, X.; Wu, T. B.; Han, B. X.; Yang, G. Y. Solvent determines the formation and properties of metal-organic frameworks. RSC Adv. 2015, 5, 37691-37696.
[391]
Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.—Eur. J. 2011, 17, 6643-6651.
[392]
Morris, W.; Wang, S. Z.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413-33418.
[393]
Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030-18033.
[394]
Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650-2663.
[395]
Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606-11613.
[396]
Feng, D. W.; Wang, K. C.; Wei, Z. W.; Chen, Y. P.; Simon, C. M.; Arvapally, R. K.; Martin, R. L.; Bosch, M.; Liu, T. F.; Fordham, S. et al. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, 5723.
[397]
Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407-7413.
[398]
Dang, Y. T.; Hoang, H. T.; Dong, H. C.; Bui, K. B. T.; Nguyen, L. H. T.; Phan, T. B.; Kawazoe, Y.; Doan, T. L. H. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microp. Mesop. Mater. 2020, 298, 110064.
[399]
Majewski, M. B.; Noh, H.; Islamoglu, T.; Farha, O. K. NanoMOFs: Little crystallites for substantial applications. J. Mater. Chem. A 2018, 6, 7338-7350.
[400]
Armstrong, M. R.; Senthilnathan, S.; Balzer, C. J.; Shan, B. H.; Chen, L.; Mu, B. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrason. Sonochem. 2017, 34, 365-370.
[401]
Joharian, M.; Morsali, A. Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J. Solid State Chem. 2019, 270, 135-146.
[402]
Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S. H.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W. et al. Metal-organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 2017, 5, 7333-7338.
[403]
Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8, 211-214.
[404]
Chen, D.; Zhao, J. H.; Zhang, P. F.; Dai, S. Mechanochemical synthesis of metal-organic frameworks. Polyhedron 2019, 162, 59-64.
[405]
Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 2010, 22, 5216-5221.
[406]
Demessence, A.; Horcajada, P.; Serre, C.; Boissière, C.; Grosso, D.; Sanchez, C.; Férey, G. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem. Commun. (Camb.) 2009, 7149-7151.
[407]
Boissiere, C.; Grosso, D.; Lepoutre, S.; Nicole, L.; Bruneau, A. B.; Sanchez, C. Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 2005, 21, 12362-12371.
[408]
Horcajada, P.; Serre, C.; Grosso, D.; Boissière, C.; Perruchas, S.; Sanchez, C.; Férey, G. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv. Mater. 2009, 21, 1931-1935.
[409]
Hinterholzinger, F. M.; Ranft, A.; Feckl, J. M.; Rühle, B.; Bein, T.; Lotsch, B. V. One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption. J. Mater. Chem. 2012, 22, 10356-10362.
[410]
Kim, D. Y.; Joshi, B. N.; Lee, J. G.; Lee, J. H.; Lee, J. S.; Hwang, Y. K.; Chang, J. S.; Al-Deyab, S.; Tan, J. C.; Yoon, S. S. Supersonic cold spraying for zeolitic metal-organic framework films. Chem. Eng. J. 2016, 295, 49-56.
[411]
Huang, X.; Sheng, P.; Tu, Z. Y.; Zhang, F. J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y. P.; Sun, Y. M. et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408.
[412]
Wu, G. D.; Huang, J. H.; Zang, Y.; He, J.; Xu, G. Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc. 2017, 139, 1360-1363.
[413]
Lu, G.; Farha, O. K.; Zhang, W. N.; Huo, F. W.; Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 2012, 24, 3970-3974.
[414]
Tao, J. F.; Wang, X. R.; Sun, T.; Cai, H.; Wang, Y. X.; Lin, T.; Fu, D. L.; Ting, L. L. Y.; Gu, Y. D.; Zhao, D. Hybrid Photonic cavity with metal-organic framework coatings for the ultra-sensitive detection of volatile organic compounds with high immunity to humidity. Sci. Rep. 2017, 7, 41640.
[415]
Zhuang, J. L.; Ar, D.; Yu, X. J.; Liu, J. X.; Terfort, A. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 2013, 25, 4631-4635.
[416]
da Luz, L. L.; Milani, R.; Felix, J. F.; Ribeiro, I. R. B.; Talhavini, M.; Neto, B. A. D.; Chojnacki, J.; Rodrigues, M. O.; Júnior, S. A. Inkjet printing of lanthanide-organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 2015, 7, 27115-27123.
[417]
Fang, S. Y.; Zhang, P.; Gong, J. L.; Tang, L.; Zeng, G. M.; Song, B.; Cao, W. C.; Li, J.; Ye, J. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chem. Eng. J. 2020, 385, 123400.
[418]
Jeazet, H. B. T.; Staudt, C.; Janiak, C. A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem. Commun. (Camb.) 2012, 48, 2140-2142.
[419]
Wang, Q. J.; Ke, T.; Yang, L. F.; Zhang, Z. Q.; Cui, X. L.; Bao, Z. B.; Ren, Q. L.; Yang, Q. W.; Xing, H. B. Separation of xe from kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving. Angew. Chem., Int. Ed. 2020, 59, 3423-3428.
[420]
Li, C.; Wu, R. J.; Zou, J. C.; Zhang, T. T.; Zhang, S. F.; Zhang, Z. Q.; Hu, X.; Yan, Y. Q.; Ling, X. M. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens. Bioelectron. 2018, 116, 81-88.
[421]
Du, L. T.; Lu, Z. Y.; Zheng, K. Y.; Wang, J. Y.; Zheng, X.; Pan, Y.; You, X. Z.; Bai, J. F. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562-565.
[422]
Sharma, S.; Ghosh, S. K. Metal-organic framework-based selective sensing of biothiols via chemidosimetric approach in water. ACS Omega 2018, 3, 254-258.
[423]
Chen, C. H.; Wang, X. S.; Li, L.; Huang, Y. B.; Cao, R. Highly selective sensing of Fe3+ by an anionic metal-organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans. 2018, 47, 3452-3458.
[424]
Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M. F.; Zakhama, A.; Couvreur, P.; Serre, C. et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal-organic frameworks. Chem. Sci. 2013, 4, 1597-1607.
[425]
Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Chevillard, S.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279-8292.
[426]
Abazari, R.; Mahjoub, A. R.; Ataei, F.; Morsali, A.; Carpenter-Warren, C. L.; Mehdizadeh, K.; Slawin, A. M. Z. Chitosan immobilization on Bio-MOF nanostructures: A biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg. Chem. 2018, 57, 13364-13379.
[427]
Neisi, Z.; Ansari-Asl, Z.; Jafarinejad-Farsangi, S.; Tarzi, M. E.; Sedaghat, T.; Nobakht, V. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites. Colloids Surf. B: Biointerfaces 2019, 178, 365-376.
[428]
Zheng, Q. Y.; Li, J.; Yuan, W.; Liu, X. M.; Tan, L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy. ACS Sustain. Chem. Eng. 2019, 7, 18114-18124.
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2020
Revised: 09 February 2021
Accepted: 23 February 2021
Published: 10 April 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the Key Research and Development Project of Zhejiang province (No. 2021C05005).

Return