Journal Home > Volume 14 , Issue 12

Graphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. Herein, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. Ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of the resulting structures after annealing at 300 ℃ on a gold surface by high-resolution noncontact atomic force microscopy clearly revealed the formation of methylene-bridged pentagons at the GNR edges. These persisted after annealing at 340 ℃, along with a few fully conjugated pentagons having singly-hydrogenated apexes. The benzylic methyl groups could also migrate or cleave-off, resulting in defects lacking the five- membered rings. Moreover, unexpected and unique structural rearrangements, including the formation of embedded heptagons, were observed. Despite the coexistence of different reaction pathways that hamper selective synthesis of a uniform structure, our results provide novel insights into on-surface reactions en route to functional, non-benzenoid carbon nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

On-surface activation of benzylic C–H bonds for the synthesis of pentagon-fused graphene nanoribbons

Show Author's information Xiushang Xu1,3,§Marco Di Giovannantonio2,,§José I. Urgel2,Carlo A. Pignedoli2Pascal Ruffieux2Klaus Müllen1,4( )Roman Fasel2( )Akimitsu Narita1,3( )
Max Planck Institute for Polymer Research 55128 Mainz Germany
Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory 8600 Dübendorf Switzerland
Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495 Japan
Institute of Physical Chemistry Johannes Gutenberg University Mainz Duesbergweg 10-14, 55128 Mainz Germany

§ Xiushang Xu and Marco Di Giovannantonio contributed equally to this work.

Present address: Istituto di Struttura della Materia-CNR (ISM-CNR), via Fosso del Cavaliere 100, 00133 Roma, Italy

Abstract

Graphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. Herein, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. Ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of the resulting structures after annealing at 300 ℃ on a gold surface by high-resolution noncontact atomic force microscopy clearly revealed the formation of methylene-bridged pentagons at the GNR edges. These persisted after annealing at 340 ℃, along with a few fully conjugated pentagons having singly-hydrogenated apexes. The benzylic methyl groups could also migrate or cleave-off, resulting in defects lacking the five- membered rings. Moreover, unexpected and unique structural rearrangements, including the formation of embedded heptagons, were observed. Despite the coexistence of different reaction pathways that hamper selective synthesis of a uniform structure, our results provide novel insights into on-surface reactions en route to functional, non-benzenoid carbon nanomaterials.

Keywords: graphene nanoribbons, on-surface synthesis, scanning-tunneling microscope, noncontact atomic force microscope, C–H activation

References(50)

1

Yano, Y.; Mitoma, N.; Ito, H.; Itami, K. A quest for structurally uniform graphene nanoribbons: Synthesis, properties, and applications. J. Org. Chem. 2020, 85, 4–33.

2

Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

3

Xu, X. S.; Müllen, K.; Narita, A. Syntheses and characterizations of functional polycyclic aromatic hydrocarbons and graphene nanoribbons. Bull. Chem. Soc. Jpn. 2020, 93, 490–506.

4

Chen, Z. P.; Narita, A.; Müllen, K. Graphene nanoribbons: On-surface synthesis and integration into electronic devices. Adv. Mater. 2020, 32, 2001893.

5

Clair, S.; de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

6

Dong, L.; Liu, P. N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774.

7

Niu, T. C.; Zhang, J. L.; Chen, W. Atomic mechanism for the growth of wafer-scale single-crystal graphene: Theoretical perspective and scanning tunneling microscopy investigations. 2D Mater. 2017, 4, 042002.

8

Shen, Q.; Gao, H. Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96.

9

Gross, L.; Schuler, B.; Pavliček, N.; Fatayer, S.; Majzik, Z.; Moll, N.; Peña, D.; Meyer, G. Atomic force microscopy for molecular structure elucidation. Angew. Chem., Int. Ed. 2018, 57, 3888–3908.

10

Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.

11

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

12

Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On- surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.

13

Denk, R.; Hohage, M.; Zeppenfeld, P.; Cai, J. M.; Pignedoli, C. A.; Söde, H.; Fasel, R.; Feng, X. L.; Müllen, K.; Wang, S. D. et al. Exciton- dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 2014, 5, 4253.

14

Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

15

Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380–1388.

16

Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.

17

Abdurakhmanova, N.; Amsharov, N.; Stepanow, S.; Jansen, M.; Kern, K.; Amsharov, K. Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon 2014, 77, 1187–1190.

18

Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8-and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.

19

Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y. et al. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Comms. Mater. 2020, 1, 36.

20

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

21

Costa, P. S.; Teeter, J. D.; Enders, A.; Sinitskii, A. Chevron-based graphene nanoribbon heterojunctions: Localized effects of lateral extension and structural defects on electronic properties. Carbon 2018, 134, 310–315.

22

Han, P.; Akagi, K.; Federici Canova, F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

23

Miao, D. D.; Daigle, M.; Lucotti, A.; Boismenu-Lavoie, J.; Tommasini, M.; Morin, J. F. Toward thiophene-annulated graphene nanoribbons. Angew. Chem., Int. Ed. 2018, 57, 3588–3592.

24

Wang, X. Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovannantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.; Ruffieux, P.; Feng, X. L. et al. Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 9104–9107.

25

Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

26

Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872–8875.

27

Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier, T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 2018, 4, eaar7181.

28

Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

29

Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.

30

Durr, R. A.; Haberer, D.; Lee, Y. L.; Blackwell, R.; Kalayjian, A. M.; Marangoni, T.; Ihm, J.; Louie, S. G.; Fischer, F. R. Orbitally matched edge-doping in graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 807–813.

31

Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

32

Moreno, C.; Paradinas, M.; Vilas-Varela, M.; Panighel, M.; Ceballos, G.; Peña, D.; Mugarza, A. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 2018, 54, 9402–9405.

33

Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S. O.; Peña, D. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018, 360, 199–203.

34

Fan, Q. T.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: Carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.

35

Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.

36

Di Giovannantonio, M.; Eimre, K.; Yakutovich, A. V.; Chen, Q.; Mishra, S.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Narita, A. et al. On-surface synthesis of antiaromatic and open-shell indeno [2, 1-b] fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354.

37

Di Giovannantonio, M.; Chen, Q.; Urgel, J. I.; Ruffieux, P.; Pignedoli, C. A.; Müllen, K.; Narita, A.; Fasel, R. On-surface synthesis of oligo (indenoindene). J. Am. Chem. Soc. 2020, 142, 12925−12929.

38

Yazaki, R.; Ohshima, T. Recent strategic advances for the activation of benzylic C-H bonds for the formation of C-C bonds. Tetrahedron Lett. 2019, 60, 151225.

39

Xue, X. S.; Ji, P. J.; Zhou, B. Y.; Cheng, J. P. The essential role of bond energetics in C-H activation/functionalization. Chem. Rev. 2017, 117, 8622–8648.

40

Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

41

Betancourt, S. S.; Johansen, Y. B.; Forsythe, J. C.; Rinna, J.; Christoffersen, K.; Skillingstad, P.; Achourov, V.; Canas, J.; Chen, L.; Pomerantz, A. E. et al. Gravitational gradient of asphaltene molecules in an oilfield reservoir with light oil. Energy Fuels 2018, 32, 4911– 4924.

42

Lohr, T. G.; Urgel, J. I.; Eimre, K.; Liu, J. Z.; Di Giovannantonio, M.; Mishra, S.; Berger, R.; Ruffieux, P.; Pignedoli, C. A.; Fasel, R. et al. On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572.

43

Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 2011, 3, 273–278.

44

Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 2000, 76, 1470–1472.

45

Bartels, L.; Meyer, G.; Rieder, K. H.; Velic, D.; Knoesel, E.; Hotzel, A.; Wolf, M.; Ertl, G. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 1998, 80, 2004–2007.

46

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.

47

Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 2018, 4, 72.

48

Yakutovich, A. V.; Eimre, K.; Schütt, O.; Talirz, L.; Adorf, C. S.; Andersen, C. W.; Ditler, E.; Du, D.; Passerone, D.; Smit, B. et al. AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 2021, 188, 110165.

49

Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: Automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 2016, 111, 218–230.

50
Xu X. S.; Di Giovannantonio M.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Fasel, R.; Narita, A. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Materials Cloud Archive 2021. 63 (2021), doi: 10.24435/materialscloud:xj-bb.https://doi.org/10.1007/s12274-021-3419-2
DOI
File
12274_2021_3419_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 January 2021
Revised: 21 February 2021
Accepted: 23 February 2021
Published: 23 April 2021
Issue date: December 2021

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

We are grateful for the financial support by the Max Planck Society, the Swiss National Science Foundation under Grant No. 200020_182015, the NCCR MARVEL funded by the Swiss National Science Foundation (No. 51NF40-182892), the European Union's Horizon 2020 research and innovation programme under grant agreement number 785219 (Graphene Flagship Core 2), the Office of Naval Research (No. N00014- 18-1-2708), and the Okinawa Institute of Science and Technology Graduate University (OIST). The Swiss National Supercomputing Centre (CSCS) under project ID s904 is acknowledged for computational resources. Skillful technical assistance by Lukas Rotach is gratefully acknowledged.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return