Journal Home > Volume 14 , Issue 12

The development of efficient and stable electrocatalysts with earth-abundant elements for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the same electrolyte is incontrovertibly vital in water electrolysis. However, their large-scale fabrication remains a great challenge. Here, we report a self-supported electrocatalyst in the form of Fe-doped Ni3S2 nanoparticles in-situ grown on three-dimensional (3D) conductive Fe-Ni alloy foam (Fe-Ni3S2/AF) by surface-assisted chemical vapor transport (SACVT) method. Homogeneous growth environment and scalability of SACVT method allow Fe-Ni3S2 nanoparticles uniformly growing on AF in large-scale. Fe-Ni3S2/AF exhibits high activity and durability when act as HER catalyst and OER precatalyst in alkaline media. The HER and OER overpotential at 10 mA/cm2 is considerably small, only 75 and 267 mV, respectively. Moreover, the electrolyzer assembled by Fe-Ni3S2/AF for overall water splitting exhibits a low cell voltage and high durability in long-term test. Based on experiments and theoretical calculation, the significantly enhanced activity could be originated from the incorporation of Fe, which contributed to increase the electrochemical active surface area, enhance electrical conductivity, optimize the hydrogen and H2O adsorption energy of Ni3S2 (101) surface in HER, and form active bimetallic Ni-Fe(oxy)hydroxide in OER. The excellent durability of self-supported Fe-Ni3S2/AF could be benefited from the in-situ growth of Fe-Ni3S2 nanoparticles on 3D AF, which could ensure closely mechanical adhesion between active materials and substrate, promote charge transport and increase surface area. This work provides a facile method for large-scale synthesis of electrocatalysts with high activity and long-term durability for efficient water electrolysis in alkaline media.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting

Show Author's information Min Wang1Li Zhang2Jialiang Pan1Meirong Huang1Hongwei Zhu1( )
State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

The development of efficient and stable electrocatalysts with earth-abundant elements for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the same electrolyte is incontrovertibly vital in water electrolysis. However, their large-scale fabrication remains a great challenge. Here, we report a self-supported electrocatalyst in the form of Fe-doped Ni3S2 nanoparticles in-situ grown on three-dimensional (3D) conductive Fe-Ni alloy foam (Fe-Ni3S2/AF) by surface-assisted chemical vapor transport (SACVT) method. Homogeneous growth environment and scalability of SACVT method allow Fe-Ni3S2 nanoparticles uniformly growing on AF in large-scale. Fe-Ni3S2/AF exhibits high activity and durability when act as HER catalyst and OER precatalyst in alkaline media. The HER and OER overpotential at 10 mA/cm2 is considerably small, only 75 and 267 mV, respectively. Moreover, the electrolyzer assembled by Fe-Ni3S2/AF for overall water splitting exhibits a low cell voltage and high durability in long-term test. Based on experiments and theoretical calculation, the significantly enhanced activity could be originated from the incorporation of Fe, which contributed to increase the electrochemical active surface area, enhance electrical conductivity, optimize the hydrogen and H2O adsorption energy of Ni3S2 (101) surface in HER, and form active bimetallic Ni-Fe(oxy)hydroxide in OER. The excellent durability of self-supported Fe-Ni3S2/AF could be benefited from the in-situ growth of Fe-Ni3S2 nanoparticles on 3D AF, which could ensure closely mechanical adhesion between active materials and substrate, promote charge transport and increase surface area. This work provides a facile method for large-scale synthesis of electrocatalysts with high activity and long-term durability for efficient water electrolysis in alkaline media.

Keywords: overall water splitting, large-scale, sulfide, surface-assisted chemical vapor transport, in-situ growth

References(51)

1

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

2

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

3

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

4

Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self- optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 2, 17127.

5

Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246.

6

Arif, M.; Yasin, G.; Shakeel, M.; Fang, X. Y.; Gao, R.; Ji, S. F.; Yan, D. P. Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem. -Asian J. 2018, 13, 1045–1052.

7

Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X. G.; Zhu, K. K.; Jiao, F. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 2015, 137, 4223–4229.

8

Ge, R. X.; Ma, M.; Ren, X.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Chen, L.; Zheng, B. Z.; Sun, X. P. A NiCo2O4@Ni-Co-Ci core-shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chem. Commun. 2017, 53, 7812–7815.

9

Wang, M.; Zhang, L.; Huang, M. R.; Zhang, Q. F.; Zhao, X. L.; He, Y. J.; Lin, S. Y.; Pan, J. L.; Zhu, H. W. One-step synthesis of a hierarchical self-supported WS2 film for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 22405–22411.

10

Ren, X.; Wang, W. Y.; Ge, R. X.; Hao, S.; Qu, F. L.; Du, G.; Asiri, A. M.; Wei, Q.; Chen, L.; Sun, X. P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun. 2017, 53, 9000–9003.

11

Yang, L.; Xie, L. S.; Ren, X.; Wang, Z. Q.; Liu, Z. A.; Du, G.; Asiri, A. M.; Yao, Y. D.; Sun, X. P. Hierarchical CuCo2S4 nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chem. Commun. 2018, 54, 78–81.

12

Wang, M.; Zhang, L.; Huang, M. R.; Liu, Y.; Zhong, Y. J.; Pan, J. L.; Wang, Y. R.; Zhu, H. W. Morphology-controlled tantalum diselenide structures as self-optimizing hydrogen evolution catalysts. Energy Environ. Mater. 2020, 3, 12–18.

13

Gao, R.; Zhang, H.; Yan, D. P. Iron diselenide nanoplatelets: Stable and efficient water-electrolysis catalysts. Nano Energy 2017, 31, 90–95.

14

Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.

15

Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

16

Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

17

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

18

Chen, P. Z.; Zhou, T. P.; Zhang, M. X.; Tong, Y.; Zhong, C. G.; Zhang, N.; Zhang, L. D.; Wu, C. Z.; Xie, Y. 3D nitrogen-anion- decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 2017, 29, 1701584.

19

Yang, C.; Gao, M. Y.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Abbott, A. P. In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 2017, 36, 85–94.

20

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water- splitting activity. Angew. Chem. , Int. Ed. 2016, 55, 6702–6707.

21

Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

22

Du, H. T.; Kong, R. M.; Qu, F. L.; Lu, L. M. Enhanced electro­catalysis for alkaline hydrogen evolution by Mn doping in a Ni3S2 nanosheet array. Chem. Commun. 2018, 54, 10100–10103.

23

Liu, Q.; Xie, L. S.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Zn- doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun. 2017, 53, 12446–12449.

24

Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

25

Long, X.; Li, G. X.; Wang, Z. L.; Zhu, H. Y.; Zhang, T.; Xiao, S.; Guo, W. Y.; Yang, S. H. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 2015, 137, 11900–11903.

26

Wu, C. R.; Liu, B. T.; Wang, J.; Su, Y. Y.; Yan, H. Q.; Ng, C.; Li, C.; Wei, J. M. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl. Surf. Sci. 2018, 441, 1024–1033.

27

Yuan, C. Z.; Sun, Z. T.; Jiang, Y. F.; Yang, Z. K.; Jiang, N.; Zhao, Z. W.; Qazi, U. Y.; Zhang, W. H.; Xu, A. W. One-step in situ growth of iron-nickel sulfide nanosheets on FeNi alloy foils: High-performance and self-supported electrodes for water oxidation. Small 2017, 13, 1604161.

28

Lin, Y. F.; Chen, G.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z. 2D free-standing nitrogen-doped Ni-Ni3S2@carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction. Small 2019, 15, 1900348.

29

Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B-Environ. 2020, 265, 118559.

30

Song, H.; Oh, S.; Yoon, H.; Kim, K. H.; Ryu, S.; Oh, J. Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy 2017, 42, 1–7.

31

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

32

Li, X.; Zhang, L.; Huang, M. R.; Wang, S. Y.; Li, X. M.; Zhu, H. W. Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 14789–14795.

33

Liu, H. J.; He, Q.; Jiang, H. L.; Lin, Y. X.; Zhang, Y. K.; Habib, M.; Chen, S. M.; Song, L. Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 2017, 11, 11574–11583.

34

Yan, J. Q.; Wu, H.; Li, P.; Chen, H.; Jiang, R. B.; Liu, S. Z. Fe(Ⅲ) doped NiS2 nanosheet: A highly efficient and low-cost hydrogen evolution catalyst. J. Mater. Chem. A 2017, 5, 10173–10181.

35

Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; Junge Puring, K.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer, D. et al. Influence of the Fe: Ni ratio and reaction temperature on the efficiency of (FexNi1–x)9S8 electrocatalysts applied in the hydrogen evolution reaction. ACS Catal. 2018, 8, 987–996.

36

Ye, W.; Yang, Y. S.; Fang, X. Y.; Arif, M.; Chen, X. B.; Yan, D. P. 2D cocrystallized metal-organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 2019, 7, 18085–18092.

37

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

38

Dong, J.; Zhang, F. Q.; Yang, Y.; Zhang, Y. B.; He, H. L.; Huang, X. F.; Fan, X. J.; Zhang, X. M. (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B-Environ. 2019, 243, 693–702.

39

Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

40

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel- iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

41

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937–1938.

42

Jiang, J.; Lu, S.; Gao, H.; Zhang, X.; Yu, H. Q. Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy 2016, 27, 526–534.

43

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

44

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

45

Wang, M.; Zhang, L.; Zhong, Y. J.; Huang, M. R.; Zhen, Z.; Zhu, H. W. In situ electrodeposition of polypyrrole onto TaSe2 nanobelts quasi-arrays for high-capacitance supercapacitor. Nanoscale 2018, 10, 17341–17346.

46

Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415–425.

47

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

48

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

49

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

50

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

51

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

File
12274_2021_3416_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2020
Revised: 27 January 2021
Accepted: 22 February 2021
Published: 10 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB1104300).

Return