Journal Home > Volume 14 , Issue 12

Two-dimensional (2D) ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications. Here we systematically investigate a large family (148) of 2D MGeX3 (M = metal elements, X = O/S/Se/Te) by means of the high-throughput first-principles calculations, and focus on their possible ferroic properties including ferromagnetism, ferroelectricity, and ferroelasticity. We discover eight stable 2D ferromagnets including five semiconductors and three half-metals, 21 2D antiferromagnets, and 11 stable 2D ferroelectric semiconductors including two multiferroic materials. Particularly, MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K, respectively. It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family, which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs, and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms, and IVB group metal elements are highly favored for 2D ferroelectricity. Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications. The atlas of ferroicity in 2D MGeX3 ­materials will spur great interest in experimental studies and would lead to diverse applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The atlas of ferroicity in two-dimensional MGeX3 family: Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity

Show Author's information Kuan-Rong Hao1Xing-Yu Ma1Hou-Yi Lyu1,3Zhen-Gang Zhu1,2Qing-Bo Yan3( )Gang Su4,1,3( )
School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing 100049 China
Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
Kavli Institute for Theoretical Sciences and CAS Center of Excellence in Topological Quantum Computation University of Chinese Academy of Sciences Beijing 100190 China

Abstract

Two-dimensional (2D) ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications. Here we systematically investigate a large family (148) of 2D MGeX3 (M = metal elements, X = O/S/Se/Te) by means of the high-throughput first-principles calculations, and focus on their possible ferroic properties including ferromagnetism, ferroelectricity, and ferroelasticity. We discover eight stable 2D ferromagnets including five semiconductors and three half-metals, 21 2D antiferromagnets, and 11 stable 2D ferroelectric semiconductors including two multiferroic materials. Particularly, MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K, respectively. It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family, which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs, and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms, and IVB group metal elements are highly favored for 2D ferroelectricity. Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications. The atlas of ferroicity in 2D MGeX3 ­materials will spur great interest in experimental studies and would lead to diverse applications.

Keywords: two-dimensional materials, ferroelectricity, ferroicity, ferroelasticity, ferromagnetic half metal

References(71)

1

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265−269.

2

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270−273.

3

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701.

4

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

5

O'Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

6

Liu, L.; Chen, S. S.; Lin, Z. Z.; Zhang, X. A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature. J. Phys. Chem. Lett. 2020, 11, 7893−7900.

7

Kulish, V. V.; Huang, W. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 2017, 5, 8734–8741.

8

Chen, P.; Zou, J. Y.; Liu, B. G. Intrinsic ferromagnetism and quantum anomalous Hall effect in a CoBr2 monolayer. Phys. Chem. Chem. Phys. 2017, 19, 13432–13437.

9

Jiang, Z.; Wang, P.; Xing, J. P.; Jiang, X.; Zhao, J. J. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 39032−39039.

10

You, J. Y.; Zhang, Z.; Gu, B.; Su, G. Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous hall effect. Phys. Rev. Appl. 2019, 12, 024063.

11

Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382−3386.

12

van Gog, H.; Li, W. F.; Fang, C, M.; Koster, R. S.; Dijkstra, M.; van Huis, M. Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. npj 2D Mater. Appl. 2019, 3, 18.

13

Deng, Y. J.; Yu, Y. K.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

14

Zhuang, H. L.; Xie, Y.; Kent, P. R. C.; Ganesh, P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B 2015, 92, 035407.

15

Sivadas, N.; Daniels, M. W.; Swendsen, R. H.; Okamoto, S.; Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 2015, 91, 235425.

16

Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H. Hwang, E.; Jung, J. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 2016, 94, 184428.

17

Dong, X. J.; You, J. Y.; Gu, B.; Su, G. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys. Rev. Appl. 2019, 12, 014020.

18

Ren, Y. L.; Ge, Y. F.; Wan, W. H.; Li, Q. Q.; Liu, Y. Two dimensional ferromagnetic semiconductor: Monolayer CrGeS3. J. Phys. : Condens. Matter 2020, 32, 015701.

19

You, J. Y.; Zhang, Z.; Dong, X. J.; Gu, B.; Su, G. Two-dimensional magnetic semiconductors with room Curie temperatures. Phys. Rev. Res. 2020, 2, 013002.

20

Kabiraj, A.; Kumar, M.; Mahapatra, S. High-throughput discovery of high Curie point two-dimensional ferromagnetic materials. NPJ Comput. Mater. 2020, 6, 35.

21

Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other Ⅲ2-Ⅵ3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

22

Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

23

Lai, Y. F.; Song, Z. G.; Wan, Y.; Xue, M. Z.; Wang, C. S.; Ye, Y.; Dai, L.; Zhang, Z. D.; Yang, W. Y.; Du, H. L. et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale 2019, 11, 5163–5170.

24

Shirodkar, S. N.; Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 2014, 112, 157601.

25

Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

26

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

27

Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042.

28

Chang, K.; Küster, F.; Miller, B. J.; Ji, J. R.; Zhang, J. L.; Sessi, P.; Barraza-Lopez, S.; Parkin, S. S. P. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 2020, 20, 6590–6597.

29

Luo, W.; Xu, K.; Xiang, H. J. Two-dimensional hyperferroelectric metals: A different route to ferromagnetic-ferroelectric multiferroics. Phys. Rev. B 2017, 96, 235415.

30

Liu, C.; Wan, W. H.; Ma, J.; Guo, W.; Yao, Y. G. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale 2018, 10, 7984–7990.

31

Wan, W. H.; Liu, C.; Xiao, W. D.; Yao, Y. G. Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl. Phys. Lett. 2017, 111, 132904.

32

Chandrasekaran, A.; Mishra, A.; Singh, A. K. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett. 2017, 17, 3290–3296.

33

Xu, B.; Xiang, H.; Xia, Y. D.; Jiang, K.; Wan, X. G.; He, J.; Yin, J.; Liu, Z. G. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale 2017, 9, 8427–8434.

34

Qi, J. S.; Wang, H.; Chen, X. F.; Qian, X. F. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl. Phys. Lett. 2018, 113, 043102.

35

Ma, X. Y.; Lyu, H. Y.; Hao, K. R.; Zhao, Y. M.; Qian, X. F.; Yan, Q. B.; Su, G. Large family of two-dimensional ferroelectric metals discovered via machine learning. Sci. Bull. 2021, 66, 233–242.

36

Yang, Q.; Wu, M. H.; Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 2018, 9, 7160−7164.

37

Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336−339.

38

Sharma, P.; Xiang, F. X.; Shao, D. F.; Zhang, D. W.; Tsymbal, E. Y.; Hamilton, A. R.; Seidel, J. A room-temperature ferroelectric semimetal. Sci. Adv. 2019, 5, eaax5080.

39

Li, W. B.; Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 2016, 7, 10843.

40

Zhao, H. J.; Ren, W.; Yang, Y. R.; Íñiguez, J.; Chen, X. M.; Bellaiche, L. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat. Commun. 2014, 5, 4021.

41

Fang, Y. W.; Ding, H. C.; Tong, W. Y.; Zhu, W. J.; Shen, X.; Gong, S. J.; Wan, X. G.; Duan, C. G. First-principles studies of multiferroic and magnetoelectric materials. Sci. Bull. 2015, 60, 156–181.

42

Dong, S.; Liu, J. M.; Cheong, S. W.; Ren, Z. F. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology. Adv. Phys. 2015, 64, 519–626.

43

Zhong, T. T.; Li, X. Y.; Wu, M. H.; Liu, J. M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Nat. Sci. Rev. 2020, 7, 373–380.

44

Xu, M. L.; Huang, C. X.; Li, Y. W.; Liu, S. Y.; Zhong, X.; Jena, P.; Kan, E.; Wang, Y. C. Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer. Phys. Rev. Lett. 2020, 124, 067602.

45

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

46

Chen, S. Q.; Yuan, S.; Hou, Z. P.; Tang, Y. L.; Zhang, J. P.; Wang, T.; Li, K.; Zhao, W. W.; Liu, X. J.; Chen, L. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 2021, 33, 2000857.

47

Zhao, P.; Ma, Y. D.; Lv, X. S.; Li, M. M.; Huang, B. B.; Dai, Y. Two-dimensional Ⅲ2-Ⅵ3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 2018, 51, 533–538.

48

Ashton, M.; Gluhovic, D.; Sinnott, S. B.; Guo, J.; Stewart, D. A.; Hennig, R. G. Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 2017, 17, 5251–5257.

49

Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

50

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

51

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

52

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169−11186.

53

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

54

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

55

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

56

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

57

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901−9904.

58

Bickers, N. E.; Scalapino, D. J.; White, S. R. Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Let. 1989, 62, 961–964.

59

Charlesworth, J. P. A.; Godby, R. W.; Needs, R. J. First-principles calculations of many-body band-gap narrowing at an Al/GaAs (110) interface. Phys. Rev. Lett. 1993, 70, 1685–1688.

60

Wang, D. S.; Wu, R. Q.; Freeman, A. J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. J. Phys. Rev. B 1993, 47, 14932–14947.

61

Wol, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 1989, 62, 361–364.

62

Chen, X. F.; Qi, J. S.; Shi, D. N. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction. Phys. Lett. A 2015, 379, 60–63.

63

Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 2019, 141, 17166–17173.

64

Verzhbitskiy, I. A.; Kurebayashi, H.; Cheng, H. X.; Zhou, J.; Khan, S.; Feng, Y. P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 2020, 3, 460–465.

65

Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

66

Ouyang, R. H.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802.

67
Mentel, L. M. mendeleev-A Python resource for properties of chemical elements, ions and isotopes. 2014. Available at: https://github.com/lmmentel/mendeleev.
68

Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

69

Yang, W.; Cao, Y.; Han, J. C.; Lin, X. Y.; Wang, X. H.; Wei, G. D.; Lv, C.; Bournel, A.; Zhao, W. S. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale 2021, 13, 862–868.

70

Meng, H.; Wang, J. P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett. 2006, 88, 172506.

71

Fu, C. F.; Sun, J. Y.; Luo, Q. Q.; Li, X. X.; Hu, W.; Yang, J. L. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018, 18, 6312–6317.

File
12274_2021_3415_MOESM1_ESM.pdf (6.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2020
Revised: 02 February 2021
Accepted: 22 February 2021
Published: 10 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors would like to thank Prof. Bo Gu, Prof. Zheng-Chuan Wang, Dr. Jing-Yang You, and Ms. Zhen Zhang for helpful discussions. All calculations are performed on Tianhe-2 at National Supercomputing Center in Guangzhou, China. This work is supported in part by the National Key R & D Program of China (No. 2018YFA0305800), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000), the National Natural Science Foundation of China (No. 11834014), the Beijing Municipal Science and Technology Commission (No. Z118100004218001), the fundamental research funds for the central universities, and University of Chinese Academy of Sciences.

Return