Journal Home > Volume 14 , Issue 12

Hierarchical Pt-alloys enriched with active sites are highly desirable for efficient catalysis, but their syntheses generally need time-consuming and elaborate annealing treatment at high temperature. We herein report a surface active-site engineering strategy for constructing the hierarchical PtNi nanocatalysts with an atomic Pt-skin layer (PtNi@Pt-SL) towards efficient triiodide reduction reaction (TRR) via an acid-dealloying approach. The facile acid-dealloying process promotes the formation of surface Pt active sites on the hierarchical Pt-alloys, and thus results in good catalytic performance towards TRR. Theoretical calculation reveals that the enhanced catalytic property stems from the moderate energy barriers for iodide atoms on the surface Pt active-sites. The surface active-site engineering strategy paves a new way for the design of active and durable electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction reaction

Show Author's information Jiabin Cui1,§Pin Ma2,4,§Weidan Li1Rui Jiang1Lirong Zheng3Yuan Lin2Chang Guo1( )Xiong Yin1( )Leyu Wang1
State Key Laboratory of Chemical Resource Engineering Innovation Centre for Soft Matter Science and Engineering College of ChemistryBeijing University of Chemical Technology Beijing 100029 China
Beijing National Laboratory for Molecular Sciences Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
Pillar of Engineering Product Development Singapore University of Technology and Design Singapore 487372 Singapore

§Jiabin Cui and Pin Ma contributed equally to this work.

Abstract

Hierarchical Pt-alloys enriched with active sites are highly desirable for efficient catalysis, but their syntheses generally need time-consuming and elaborate annealing treatment at high temperature. We herein report a surface active-site engineering strategy for constructing the hierarchical PtNi nanocatalysts with an atomic Pt-skin layer (PtNi@Pt-SL) towards efficient triiodide reduction reaction (TRR) via an acid-dealloying approach. The facile acid-dealloying process promotes the formation of surface Pt active sites on the hierarchical Pt-alloys, and thus results in good catalytic performance towards TRR. Theoretical calculation reveals that the enhanced catalytic property stems from the moderate energy barriers for iodide atoms on the surface Pt active-sites. The surface active-site engineering strategy paves a new way for the design of active and durable electrocatalysts.

Keywords: dealloying, hierarchical structure, surface active-site engineering, Pt skin-layer, triiodide reduction reaction

References(35)

1

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

2

Wang, Y. H.; Zhang, L.; Hu, C. L.; Yu, S. N.; Yang, P. P.; Cheng, D. F.; Zhao, Z. J.; Gong, J. L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 2019, 12, 2268-2274.

3

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.

4

Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680-1683.

5

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

6

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

7

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

8

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.

9

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.

10

Perini, L.; Durante, C.; Favaro, M.; Perazzolo, V.; Agnoli, S.; Schneider, O.; Granozzi, G.; Gennaro, A. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl. Mater. Inter. 2015, 7, 1170-1179.

11

Chen, X. T.; Si, C. H.; Wang, Y.; Ding, Y.; Zhang, Z. H. Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1831-1843.

12

Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310-3314.

13

Fichtner, J.; Garlyyev, B.; Watzele, S.; El-Sayed, H. A.; Schwämmlein, J. N.; Li, W. J.; Maillard, F. M.; Dubau, L.; Michalička, J.; Macak, J. M. et al. Top-down synthesis of nanostructured platinum-lanthanide alloy oxygen reduction reaction catalysts: PtxPr/C as an example. ACS Appl. Mater. Inter. 2019, 11, 5129-5135.

14

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595-6663.

15

Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fan, L. Q.; Luo, G. G.; Lin, Y.; Xie, Y. M.; Wei, Y. L. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975-6023.

16

Bu, L. Z.; Shao, Q.; E, B.; Guo, J.; Yao, J. L.; Huang, X. Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576-9582.

17

Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156-5163.

18

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.

19

Duan, Y.; Yu, Z. Y.; Yang, L.; Zheng, L. R.; Zhang, C. T.; Yang, X. T.; Gao, F. Y.; Zhang, X. L.; Yu, X. X.; Liu, R. et al. Bimetallic nickel- molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789.

20

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

21

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-3990.

22

Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953-10958.

23

Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qi, D. D.; Peng, X. J.; Hagfeldt, A.; Grätzel, M.; Ma, T. L. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 3419-3428.

24

Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. , Int. Ed. 2012, 51, 12124-12127.

25

Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye- sensitized solar cells. Angew. Chem. , Int. Ed. 2014, 53, 14569-14574.

26

Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew. Chem. , Int. Ed. 2015, 54, 11448- 11452.

27

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. , Int. Ed. 2016, 55, 6708-6712.

28

Lu, W. L.; Jiang, R.; Yin, X.; Wang, L. Y. Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt. Nano Res. 2019, 12, 159-163.

29

Wang, Y. Q.; Gao, X. L.; Song, B.; Gu, Y. L.; Sun, Y. M. Photoelectrochemical properties of MWCNT-TiO2 hybrid materials as a counter electrode for dye-sensitized solar cells. Chin. Chem. Lett. 2014, 25, 491-495.

30

Li, Z. X.; Liu, S. A.; Li, L. D.; Qi, W. K.; Lai, W. D.; Li, L.; Zhao, X. H.; Zhang, Y. C.; Zhang, W. M. In situ grown MnCo2O4@NiCo2O4 layered core-shell plexiform array on carbon paper for high efficiency counter electrode materials of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2021, 220, 110859.

31

Sarkar, A.; Chakraborty, A. K.; Bera, S. NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 2018, 182, 314-320.

32

Ma, P.; Lu, W. L.; Yan, X. Y.; Li, W. D.; Li, L.; Fang, Y. Y.; Yin, X.; Liu, Z. G.; Lin, Y. Heteroatom tri-doped porous carbon derived from waste biomass as Pt-free counter electrode in dye-sensitized solar cells. RSC Adv. 2018, 8, 18427-18433.

33

Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat. Commun. 2013, 4, 1583.

34

Wang, X. W.; Xie, Y.; Bateer, B.; Pan, K.; Jiao, Y. Q.; Xiong, N.; Wang, S.; Fu, H. G. Selenization of Cu2ZnSnS4 Enhanced the performance of dye-sensitized solar cells: Improved zinc-site catalytic activity for I3-. ACS Appl. Mater. Inter. 2017, 9, 37662-37670.

35

Wan, J. W.; Fang, G. J.; Yin, H. J.; Liu, X. F.; Liu, D.; Zhao, M. T.; Ke, W. J.; Tao, H.; Tang, Z. Y. Pt-Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: Experimental and theoretical understanding. Adv. Mater. 2014, 26, 8101-8106.

File
12274_2021_3410_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 December 2020
Revised: 12 February 2021
Accepted: 21 February 2021
Published: 29 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (No. 21771019), the National Key Research and Development Program of China (No. 2018YFA0702002), and the Fundamental Research Funds for the Central Universities (Nos. XK1901 and buctrc202023). P. Ma is funded by China Postdoctoral Science Foundation (No. 2020M672772). We are thankful for 1W1B in Beijing Electron Positron Collider II (BSRF) for X-ray absorption spectroscopy (XAS) measurements.

Return