Journal Home > Volume 14 , Issue 12

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g–1 could be remained after 1, 200 cycles at a current density of 100 mA·g–1. When applied as anode materials for SIBs, 300 mAh·g–1 could be retained after 300 cycles at 2 A·g–1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g–1, 120.3 mAh·g–1 could be preserved after 3, 400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g–1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dandelion-Like Bi2S3/rGO hierarchical microspheres as high- performance anodes for potassium-ion and half/full sodium-ion batteries

Show Author's information Xiuping Sun1Lu Wang1Chuanchuan Li1Debao Wang2Iqbal Sikandar1Ruxia Man1Fang Tian1Yitai Qian1Liqiang Xu1,3( )
Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShandong University Jinan 250100 China
College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China
Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology Liaocheng University Liaocheng City 252059 China

Abstract

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g–1 could be remained after 1, 200 cycles at a current density of 100 mA·g–1. When applied as anode materials for SIBs, 300 mAh·g–1 could be retained after 300 cycles at 2 A·g–1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g–1, 120.3 mAh·g–1 could be preserved after 3, 400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g–1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

Keywords: full cell, potassium ion battery, anode material, sodium ion battery, Bi2S3

References(52)

1

Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.

2

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

3

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R.; Pellegrini, V. Graphene, related two- dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

4

Wang, N. N.; Chu, C. X.; Xu, X.; Du, Y.; Yang, J.; Bai, Z. C.; Dou, S. X. Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 2018, 8, 1801888.

5

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

6

Chen, Q.; Sun, S.; Zhai, T.; Yang, M.; Zhao, X. Y.; Xia, H. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 2018, 8, 1800054.

7

Mao, J. F; Zhou, T. F.; Zheng, Y.; Gao, H. K.; Liu, H. K.; Guo, Z. P. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 2018, 6, 3284-3303.

8

Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y. J.; Wang, Z. J.; Li, S.; Peterson, V. K.; Mao, J. F; Guo, Z. P. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900568.

9

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double- shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K‑ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496-1504.

10

Dong, C. F.; Liang, J. W.; He, Y. Y.; Li, C. C.; Chen, X. X.; Guo, L. J.; Tian, F.; Qian, Y. T.; Xu, L. Q. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries. ACS Nano 2018, 12, 8277-8287.

11

He, Y. Y.; Luo, M.; Dong, C. F.; Ding, X. Y.; Yin, C. C.; Nie, A. M.; Chen, Y. N.; Qian, Y. T.; Xu, L. Q. Coral-like NixCo1-xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 2019, 7, 3933-3940.

12

He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow Carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35-45.

13

Dong, C. F.; Guo, L. J.; He, Y. Y.; Chen, C. J.; Qian, Y. T.; Chen, Y. N.; Xu, L. Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater. 2018, 15, 234-241.

14

Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium- ion batteries. Adv. Mater. 2017, 29, 1700606.

15

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

16

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K‑ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.

17

Sonia, F. J.; Jangid, M. K.; Aslam, M.; Johari, P.; Mukhopadhyay, A. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano. 2019, 13, 2190-2204.

18

Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano. 2017, 11, 12658-12667.

19

Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high- performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.

20

Li, C. C; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2018, 30, 6969-6977.

21

Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214-220.

22

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

23

Wu, J. X.; Zhang, Q.; Liu, S. L.; Long, J.; Wu, Z. B.; Zhang, W. C.; Pang, W. K.; Sencadas, V.; Song, R.; Song, W. L. et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 2020, 77, 105118.

24

Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju. Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

25

Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

26

Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

27

Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.

28

Ma, Y. F.; Guo, Q. B.; Yang, M.; Wang, Y. H.; Chen, T. T.; Chen, Q.; Zhu, X. H.; Xia, Q. Y.; Li, S.; Xia, H. Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 2018, 13, 134-141.

29

Liu, J. L.; Zhang, Y. Q.; Zhang, L.; Xie, F. X.; Vasileff, A.; Qiao, S. Z. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 2019, 31, 1901261.

30

Mahmood, A.; Li, S.; Ali, Z.; Tabassum, H.; Zhu, B. J.; Liang, Z. B.; Meng, W.; Aftab, W.; Guo, W. H.; Zhang, H. et al. Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 2018, 31, 1805430.

31

Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

32

Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang. Y.; Wang, W.; Li, J. B. et al. Metallic graphene- like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

33

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

34

Dai, R.; Wang, Y. H.; Da, P. M.; Wu, H.; Xu, M.; Zheng, G. F. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 2014, 6, 13236-13241.

35

Ni, J. F.; Bi, X. X.; Jiang, Y.; Li, L.; Lu, J. Bismuth chalcogenide compounds Bi2X3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy 2017, 34, 356-366.

36

Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Q. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201-7207.

37

Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 2018, 8, 1703496.

38

Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213-220.

39

Kim, H.; Kim, D.; Lee, K.; Byun, D.; Kim, H. S.; Choi, W. Synthesis of Bi2S3/C yolk-shell composite based on sulfur impregnation for efficient sodium storage. Chem. Eng. J. 2020, 383, 123094.

40

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore- shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

41

Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913-4921.

42

Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ. Sci. 2018, 11, 1218-1225.

43

Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.

44

Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434-442.

45

Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah. M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615-623.

46

Zong, W.; Lai, F. L.; He, G. J.; Feng, J. R.; Wang, W.; Lian, R. Q.; Miao, Y. E.; Wang, G. C.; Parkin, I. P.; Liu, T. X. Sulfur-deficient bismuth sulfide/nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors. Small 2018, 14, 1801562.

47

Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193-6198.

48

Liu, S. L; Mao, J. F; Zhang, Q.; Wang, Z. J; Pang, W. K.; Zhang, L.; Du, A. J; Sencadas, V.; Zhang, W. C; Guo, Z. P. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. , Int. Ed. 2020, 59, 3638-3644.

49

Liu, S. L.; Mao, J. F.; Zhang, L.; Pang, W. K.; Du, A. J.; Guo, Z. P. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 2020, 33, 2006313.

50

Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694-17698.

51

Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-Pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765-773.

52

Xu, Y. N.; Wei, Q.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai, L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

File
12274_2021_3407_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 December 2020
Revised: 04 February 2021
Accepted: 20 February 2021
Published: 29 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the Academy of Sciences large apparatus United Fund of China (No. U1832187), the National Nature Science Foundation of China (Nos. 22071135 and 21471091), the Nature Science Foundation of Shandong Province (No. ZR2019MEM030), the Taishan Scholar Project of Shandong Province (No. ts201511004), and the Fundamental Research Funds of Shandong University (No. 2018JC022).

Return