Journal Home > Volume 14 , Issue 12

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure- performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.


menu
Abstract
Full text
Outline
About this article

Graphene: A promising candidate for charge regulation in high- performance lithium-ion batteries

Show Author's information Danping Sun1,2,§Zhi Tan2,§Xuzheng Tian2Fei Ke2Yale Wu2Jin Zhang1,2( )
College of Chemistry and Molecular Engineering, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
Beijing Graphene Institute (BGI)Beijing100095China

§Danping Sun and Zhi Tan contributed equally to this work.

Abstract

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure- performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.

Keywords: graphene, charge transport, lithium-ion battery, electron and ion transfer

References(154)

1
Dominko, R.; Edström, K.; Fichtner, M.; Perraud, S.; Punckt, C.; Asinari, P.; Castelli, I. E.; Chistensen, R.; Clark, S.; Grimaud, A. et al. BATTERY 2030+ Roadmap [online]. 2020;https://battery2030.eu/digitalAssets/860/c_860904-l_1-k_roadmap-27-march.pdf(accessed Mar 2020).https://doi.org/10.33063/diva2-1452023
DOI
2

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E28.

3

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

4

Gong, C. L.; Xue, Z. G.; Wen, S.; Ye, Y. S.; Xie, X. L. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J. Power Sources 2016, 318, 93–112.

5

Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687.

6

Qiao, Y. Q.; Feng, W. L.; Li, J.; Shen, T. D. Ultralong cycling stability of carbon-nanotube/LiFePO4 nanocomposites as electrode materials for lithium-ion batteries. Electrochim. Acta 2017, 232, 323–331.

7

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large- volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

8

Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Khan, U.; Li, Y. G.; Coleman, J. N. Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes. ACS Nano 2016, 10, 5980–5990.

9

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

10

Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053.

11

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

12

Palacín, M. R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

13

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho- olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

14

Yuan, W. Y.; Zhang, Y. N.; Cheng, L. F.; Wu, H.; Zheng, L. X.; Zhao, D. L. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J. Mater. Chem. A 2016, 4, 8932–8951.

15

Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. Wiley: New York, 2001.

16

Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 2013, 46, 1144–1160.

17

Linden, D.; Reddy, T. B. Handbook of Batteries; 3rd ed. McGraw-Hill: New York, 2001.

18

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and super­capacitors? Chem. Rev. 2004, 104, 4245–4269.

19

Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913–A921.

20

Kaneko, M.; Nakayama, M.; Wakizaka, Y.; Kanamura, K.; Wakihara, M. Enhancement of electrochemical ion/electron-transfer reaction at solid| liquid interface by polymer coating on solid surface. Electrochim. Acta 2008, 53, 8196–8202.

21

Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

22

Griffiths, D. J. Introduction to Quantum Mechanics; 2nd ed. Pearson Prentice Hall: Upper Saddle River, 2005.

23

Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2005.

24

Kittel, C. Introduction to Solid State Physics; 7th ed. John & Wiley: New York, 1996.

25

Callister, W. D. Jr. Materials Science and Engineering: An Introduction; 4th ed. Wiley: New York, 1997.

26

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

27

Ashuri, M.; He, Q. R.; Shaw, L. L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74–103.

28

Shi, S. Q.; Ouyang, C. Y.; Lei, M. S.; Tang, W. H. Effect of Mg- doping on the structural and electronic properties of LiCoO2: A first-principles investigation. J. Power Sources 2007, 171, 908–912.

29

Marzec, J.; Świerczek, K.; Przewoźnik, J.; Molenda, J.; Simon, D. R.; Kelder, E. M.; Schoonman, J. Conduction mechanism in operating a LiMn2O4 cathode. Solid State Ionics 2002, 146, 225–237.

30

Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.

31

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

32

Holm, R. Electric Contacts: Theory and Application. Springer: Heidelberg, 1967.

33

Taheri, P.; Hsieh, S.; Bahrami, M. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. J. Power Sources 2011, 196, 6525–6533.

34

Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

35

Wilkinson, D. S. Mass Transport in Solids and Fluids; Cambridge University Press: Cambridge, 2000.

36

Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer-Verlag: Berlin, 2007.

37

Uthaisar, C.; Barone, V. Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 2010, 10, 2838–2842.

38

Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Graphene: A two- dimensional platform for lithium storage. Small 2013, 9, 1173–1187.

39

Liu, T.; Sun, S. M.; Zang, Z.; Li, X. C.; Sun, X. L.; Cao, F. T.; Wu, J. F. Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode. RSC Adv. 2017, 7, 20882–20887.

40

Shida, K.; Sahara, R.; Mizuseki, H.; Kawazoe, Y. Controlling 3D percolation threshold of conductor-insulator composites by changing the granular size of conductors. Mater. Trans. 2011, 52, 2216–2219.

41

Ma, X. L.; Ning, G. Q.; Sun, Y. Z.; Pu, Y. J.; Gao, J. S. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 2014, 79, 310–320.

42

Li, Q.; Tian, X. J.; Chen, Z.; Wu, J. Y.; Li, Y.; Li, Y. F. Synergistic effect of size distribution on the electrical and thermal conductivities of graphene-based paper. J. Mater. Sci. 2018, 53, 10261–10269.

43

Tang, R.; Yun, Q. B.; Lv, W.; He, Y. B.; You, C. H.; Su, F. Y.; Ke, L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon 2016, 103, 356–362.

44

Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene- polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

45

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

46

Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.

47

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

48

Lee, S. K.; Jang, H. Y.; Jang, S.; Choi, E.; Hong, B. H.; Lee, J.; Park, S.; Ahn, J. H. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 2012, 12, 3472–3476.

49

Datta, D.; Li, J. W.; Koratkar, N.; Shenoy, V. B. Enhanced lithiation in defective graphene. Carbon 2014, 80, 305–310.

50

Yu, Y. Z.; Guo, J. G.; Zhou, L. J. Theoretical investigation on the adsorption and diffusion of lithium-ion on and between graphene layers with size and defect effects. Adsorpt. Sci. Technol. 2016, 34, 212–226.

51

Zhang, Y.; Hao, H. L.; Wang, L. L. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide. Appl. Surf. Sci. 2016, 390, 385–392.

52

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

53

Compagnini, G.; Giannazzo, F.; Sonde, S.; Raineri, V.; Rimini, E. Ion irradiation and defect formation in single layer graphene. Carbon 2009, 47, 3201–3207.

54

Cruz-Silva, E.; Botello-Méndez, A. R.; Barnett, Z. M.; Jia, X.; Dresselhaus, M. S.; Terrones, H.; Terrones, M.; Sumpter, B. G.; Meunier, V. Controlling edge morphology in graphene layers using electron irradiation: From sharp atomic edges to coalesced layers forming loops. Phys. Rev. Lett. 2010, 105, 045501.

55

Lin, Y.; Watson, K. A.; Kim, J. W.; Baggett, D. W.; Working, D. C.; Connell, J. W. Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale 2013, 5, 7814–7824.

56

Robertson, A. W.; Allen, C. S.; Wu, Y. A.; He, K.; Olivier, J.; Neethling, J.; Kirkland, A. I.; Warner, J. H. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 2012, 3, 1144.

57

Zhong, J. H.; Zhang, J.; Jin, X.; Liu J. Y.; Li, Q. Y.; Li, M. H.; Cai, W. W.; Wu, D. Y.; Zhan, D. P.; Ren, B. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 2014, 136, 16609–16617.

58

Du, Z. Z.; Ai, W.; Sun, C. C.; Zou, C. J.; Zhao, J. F.; Chen, Y.; Dong, X. C.; Liu, J. Q.; Sun, G. Z.; Yu, T. et al. Engineering the Li storage properties of graphene anodes: Defect evolution and pore structure regulation. ACS Appl. Mater. Interfaces 2016, 8, 33712–33722.

59

Datta, D.; Li, J. W.; Shenoy, V. B. Defective graphene as a high- capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 1788–1795.

60

Pang, Z. Q.; Shi, X. H.; Wei, Y. J.; Fang, D. N. Grain boundary and curvature enhanced lithium adsorption on carbon. Carbon 2016, 107, 557–563.

61

Das, D.; Kim, S.; Lee, K. R.; Singh, A. K. Li diffusion through doped and defected graphene. Phys. Chem. Chem. Phys. 2013, 15, 15128– 15134.

62

Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 2011, 1, 1079–1084.

63

Chen, K. F.; Song, S. Y.; Liu, F.; Xue, D. F. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230–6257.

64

Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Kanamura, K.; Abe, H. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries. J. Power Sources 2020, 449, 227553.

65

Deng, B. W.; Xu, R.; Wang, X. K.; An, L. C.; Zhao, K. J.; Cheng, G. J. Roll to roll manufacturing of fast charging, mechanically robust 0D/2D nanolayered Si-graphene anode with well-interfaced and defect engineered structures. Energy Storage Mater. 2019, 22, 450–460.

66

Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S. J.; Gao, X. F.; Xu, B. Q.; Weiss, P. S.; Zhao, Y. L. Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 2012, 41, 97–114.

67

Whitby, R. L. D. Chemical control of graphene architecture: Tailoring shape and properties. ACS Nano 2014, 8, 9733–9754.

68

David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770.

69

Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679–5683.

70

Ha, S. H.; Lee, Y. J. Core-shell LiFePO4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes. Chem. –Eur. J. 2015, 21, 2132–2138.

71

Liu, L.; Gao, R.; Sun, L. M.; Han, S. B.; Chen, D. F.; Hu, Z. B.; Liu, X. F. Ultrahigh cycling stability and rate capability of ZnFe2O4@graphene hybrid anode prepared through a facile syn-graphenization strategy. New J. Chem. 2016, 40, 3139–3146.

72

Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 2001, 64, 1–49.

73

Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252.

74

Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

75

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

76

Youn, H. C.; Bak, S. M.; Kim, M. S.; Jaye, C.; Fischer, D. A.; Lee, C. W.; Yang, X. Q.; Roh, K. C.; Kim, K. B. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors. ChemSusChem 2015, 8, 1875–1884.

77

López, V.; Sundaram, R. S.; Gómez-Navarro, C.; Olea, D.; Burghard, M.; Gómez-Herrero, J.; Zamora, F.; Kern, K. Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers. Adv. Mater. 2009, 21, 4683–4686.

78

Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.

79

Du, M.; Sun, J.; Chang, J.; Yang, F.; Shi, L. J.; Gao, L. Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode. RSC Adv. 2014, 4, 42412–42417.

80

Cai, D. D.; Wang, S. Q.; Lian, P. C.; Zhu, X. F.; Li, D. D.; Yang, W. S.; Wang, H. H. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim. Acta 2013, 90, 492–497.

81

Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

82

Wang, X.; Weng, Q. H.; Liu, X. Z.; Wang, X. B.; Tang, D. M.; Tian, W.; Zhang, C.; Yi, W.; Liu, D. Q.; Bando, Y. et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 2014, 14, 1164–1171.

83

Wang, D. D.; Liu, H. X.; Shan, Z. Q.; Xia, D. W.; Na, R.; Liu, H. D.; Wang, B. H.; Tian, J. H. Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 2020, 27, 387–395.

84

Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

85

Zhao, Z.; Wang, J.; Cheng, M.; Wu, J.; Zhang, Q.; Liu, X. T.; Wang, C. W.; Wang, J. Y.; Li, K. X.; Wang, J. Z. N-doped porous carbon- graphene cables synthesized for self-standing cathode and anode hosts of Li-S batteries. Electrochim. Acta 2020, 349, 136231.

86

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

87

Chen, C. M.; Yang, Q. H.; Yang, Y. G.; Lv, W.; Wen, Y. F.; Hou, P. X.; Wang, M. Z.; Cheng, H. M. Self-assembled free-standing graphite oxide membrane. Adv. Mater. 2009, 21, 3007–3011.

88

Sheng, K. X.; Xu, Y. X.; Li, C.; Shi, G. Q. High-performance self- assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 2011, 26, 9–15.

89

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

90

Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

91

Cheng, Q. Porous graphene sponge additives for lithium ion batteries with excellent rate capability. Sci. Rep. 2017, 7, 925.

92

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

93

Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

94

Wang, X. P.; Lv, L. X.; Cheng, Z. H.; Gao, J.; Dong, L. Y.; Hu, C. G.; Qu, L. T. High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 2016, 6, 1502100.

95

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.

96

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

97

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

98

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

99

Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 2007, 446, 56–59.

100

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

101

Xu, Q.; Sun, J. K.; Yu, Z. L.; Yin, Y. X.; Xin, S.; Yu, S. H.; Guo, Y. G. SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Adv. Mater. 2018, 30, 1707430.

102

Huang, J. R.; Liu, D. X.; Gu, C. P.; Liu, J. Y. General approach for preparing sandwich-structured metal sulfide@reduced graphene oxide as highly reversible Li-ion battery anode. Mater. Res. Lett. 2018, 6, 307–313.

103

Shi, Y.; Wen, L.; Li, F.; Cheng, H. M. Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources 2011, 196, 8610–8617.

104

Wasalathilake, K. C.; Hapuarachchi, S. N. S.; Zhao, Y. B.; Fernando, J. F. S.; Chen, H.; Nerkar, J. Y.; Golberg, D.; Zhang, S. Q.; Yan, C. Unveiling the working mechanism of graphene bubble film/silicon composite anodes in Li-ion batteries: from experiment to modeling. ACS Appl. Energy Mater. 2020, 3, 521–531.

105

Fu, Y. X.; Dai, Y.; Pei, X. Y.; Lyu, S. S.; Heng, Y.; Mo, D. C. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Appl. Surf. Sci. 2019, 497, 143553.

106

Agyeman, D. A.; Song, K.; Lee, G. H.; Park, M.; Kang, Y. M. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy- density Li-ion battery. Adv. Energy Mater. 2016, 6, 1600904.

107

Hu, Y. H.; Li, X. F.; Lushington, A.; Cai, M.; Geng, D. S.; Banis, M. N.; Li, R. Y.; Sun, X. L. Fabrication of MoS2-graphene nanocomposites by layer-by-layer manipulation for high-performance lithium ion battery anodes. ECS J. Solid State Sci. Technol. 2013, 2, M3034–M3039.

108

Jeon, J. W.; Biswas, M. C.; Patton, C. L.; Wujcik, E. K. Water- processable, sprayable LiFePO4/graphene hybrid cathodes for high- power lithium ion batteries. J. Ind. Eng. Chem. 2020, 84, 72–81.

109

Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Zhong, Y.; Moghimian, N.; Tong, X.; Sun, S. H. LiFePO4-graphene composites as high-performance cathodes for lithium-ion batteries: The impact of size and morphology of graphene. Materials 2019, 12, 842.

110

Zhou, X. F.; Wang, F.; Zhu, Y. M.; Liu, Z. P. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353–3358.

111

Wei, W.; Lv, W.; Wu, M. B.; Su, F. Y.; He, Y. B.; Li, B. H.; Kang, F. Y.; Yang, Q. H. The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 2013, 57, 530–533.

112

Tian, X. H.; Zhou, Y. K.; Tu, X. F.; Zhang, Z. T.; Du, G. D. Well- dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries. J. Power Sources 2017, 340, 40–50.

113

Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

114

Wang, B.; Al Abdulla, W.; Wang, D. L.; Zhao, X. S. A three- dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ. Sci. 2015, 8, 869–875.

115

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1–xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem., Int. Ed. 2011, 50, 7364–7368.

116

Rui, X. H.; Sim, D. H.; Wong, K. M.; Zhu, J. X.; Liu, W. L.; Xu, C.; Tan, H. T.; Xiao, N.; Hng, H. H.; Lim, T. M. et al. Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries. J. Power Sources 2012, 214, 171–177.

117

Bak, S. M.; Nam, K. W.; Lee, C. W.; Kim, K. H.; Jung, H. C.; Yang, X. Q.; Kim, K. B. Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 2011, 21, 17309–17315.

118

Chen, Z. H.; Belharouak, I.; Sun, Y. K.; Amine, K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 959–969.

119

Tsai, P. C.; Hsu, W. D.; Lin, S. K. Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. J. Electrochem. Soc. 2014, 161, A439–A444.

120

Mhamane, D.; Aravindan, V.; Taneja, D.; Suryawanshi, A.; Game, O.; Srinivasan, M.; Ogale, S. Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Compos. Sci. Technol. 2016, 130, 88–95.

121

He, H. Y.; Fu, W.; Wang, H. T.; Wang, H.; Jin, C. H.; Fan, H. J.; Liu, Z. Silica-modified SnO2-graphene "slime" for self-enhanced Li-ion battery anode. Nano Energy 2017, 34, 449–455.

122

Dou, Y. H.; Xu, J. T.; Ruan, B. Y.; Liu, Q. N.; Pan, Y. D.; Sun, Z. Q.; Dou, S. X. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1501835.

123

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

124

Jiang, Y.; Yan, X. M.; Xiao, W.; Tian, M. L.; Gao, L.; Qu, D. Y.; Tang, H. L. Co3O4-graphene nanoflowers as anode for advanced lithium ion batteries with enhanced rate capability. J. Alloys Compd. 2017, 710, 114–120.

125

Huang, M. B.; Chen, C. H.; Wu, S. P.; Tian, X. D. Remarkable high-temperature Li-storage performance of few-layer graphene- anchored Fe3O4 nanocomposites as an anode. J. Mater. Chem. A 2017, 5, 23035–23042.

126

Li, L.; Wang, H. L.; Xie, Z. J.; An, C. H.; Jiang, G. X.; Wang, Y. J. 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. J. Alloys Compd. 2020, 815, 152337.

127

Xiang, Y.; Zhang, W. F.; Chen, B.; Jin, Z. Q.; Zhang, H.; Zhao, P. C.; Cao, G. P.; Meng, Q. Q. Nano-Li4Ti5O12 particles in-situ deposited on compact holey-graphene framework for high volumetric power capability of lithium ion battery anode. J. Power Sources 2020, 447, 227372.

128

Li, C.; Zhao, M.; Sun, C. N.; Jin, B.; Yang, C. C.; Jiang, Q. Surface-amorphized TiO2 nanoparticles anchored on graphene as anode materials for lithium-ion batteries. J. Power Sources 2018, 397, 162–169.

129

Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.

130

Yang, M.; Liu, J. X.; Li, S. K.; Zhang, S.; Wang, Y. C.; He, C. Ultrafast synthesis of graphene nanosheets encapsulated Si nano­particles via deflagration of energetic materials for lithium-ion batteries. Nano Energy 2019, 65, 104028.

131

Xue, H. L.; Wang, J.; Wang, S. S.; Muhammad, S.; Feng, C. H.; Wu, Q.; Li, H. S.; Shi, D. X.; Jiao, Q. Z.; Zhao, Y. Core-shell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. New J. Chem. 2018, 42, 15340–15345.

132

Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tubke, J. Lithium-sulfur cells: The gap between the state-of-the- art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

133

Wang, M. Z.; Yang, H.; Wang, K. X.; Chen, S. L.; Ci, H. N.; Shi, L. R.; Shan, J. Y.; Xu, S. P.; Wu, Q. C.; Wang, C. Z. et al. Quantitative analyses of the interfacial properties of current collectors at the mesoscopic level in lithium ion batteries by using hierarchical graphene. Nano Lett. 2020, 20, 2175–2182.

134

Mo, R. W.; Rooney, D.; Sun, K. N.; Yang, H. Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 2017, 8, 13949.

135

Shin, D. Y.; Ahn, H. J. Interfacial engineering of a heteroatom-doped graphene layer on patterned aluminum foil for ultrafast lithium storage kinetics. ACS Appl. Mater. Interfaces 2020, 12, 19210– 19217.

136

Shen, W.; Li, K.; Lv, Y. Y.; Xu, T.; Wei, D.; Liu, Z. F. Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Adv. Energy Mater. 2020, 10, 1904281.

137

Xu, H. L.; Jin, H. C.; Qi, Z. K.; Guo, Y.; Wang, J. X.; Zhu, Y. W.; Ji, H. X. Graphene foil as a current collector for NCM material-based cathodes. Nanotechnology 2020, 31, 205710.

138

Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

139

Rana, K.; Singh, J.; Lee, J. T.; Park, J. H.; Ahn, J. H. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11158–11166.

140

Jiang, J. M.; Nie, P.; Ding, B.; Wu, W. X.; Chang, Z.; Wu, Y. T.; Dou, H.; Zhang, X. G. Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 30926–30932.

141

Liu, X. F.; Wang, D.; Zhang, B. S.; Luan, C.; Qin, T. T.; Zhang, W.; Wang, D.; Shi, X. Y.; Deng, T.; Zheng, W. T. Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture. Electrochim. Acta 2018, 268, 234–240.

142

Wen, L.; Liang, J.; Liu, C. M.; Chen, J.; Huang, Q. G.; Luo, H. Z.; Li, F. Li4Ti5O12 on graphene for high rate lithium ion batteries. J. Electrochem. Soc. 2016, 163, A2951–A2955.

143

Su, F. Y.; Tang, R.; He, Y. B.; Zhao, Y.; Kang, F. Y.; Yang, Q. H. Graphene conductive additives for lithium ion batteries: Origin, progress and prospect. Chin. Sci. Bull. 2017, 62, 3743–3756.

144

Wei, X. F.; Guan, Y. B.; Zheng, X. H.; Zhu, Q. Z.; Shen, J. R.; Qiao, N.; Zhou, S. Q.; Xu, B. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Appl. Surf. Sci. 2018, 440, 748–754.

145

Liu, T. F.; Zhao, L.; Zhu, J. S.; Wang, B.; Guo, C. F.; Wang, D. L. The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries. J. Mater. Chem. A 2014, 2, 2822–2829.

146

Li, X. L.; Zhang, Y. L.; Song, H. F.; Du, K.; Wang, H.; Li, H. Y.; Huang, J. M. The comparison of carbon conductive additives with different dimensions on the electrochemical performance of LiFePO4 cathode. Int. J. Electrochem. Sci. 2012, 7, 7111–7120.

147

Rai, A. K.; Gim, J.; Kang, S. W.; Mathew, V.; Anh, L. T.; Kang, J.; Song, J.; Paul, B. J.; Kim, J. Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method. Mater. Chem. Phys. 2012, 136, 1044–1051.

148

Zhang, B.; Yu, Y.; Liu, Y. S.; Huang, Z. D.; He, Y. B.; Kim, J. K. Percolation threshold of graphenenanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. Nanoscale 2013, 5, 2100– 2106.

149

Sun, D. P.; Tian, X. Z.; Ke, F.; Zhang, J. Competition and synergy of carbon nanomaterials in lithium-ion battery. Sci. Sin. Chim. 2020, 50, 1333–1343.

150

Chen, H. W.; Zhang, H. X.; Wu, Y. H.; Zhang, T.; Guo, Y. C.; Zhang, Q. H.; Zeng, Y. J.; Lu, J. G. Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents. J. Electroanal. Chem. 2018, 827, 112–119.

151

Jiang, R. Y.; Cui, C. Y.; Ma, H. Y. Using graphenenanosheets as a conductive additive to enhance the rate performance of spinel LiMn2O4 cathode material. Phys. Chem. Chem. Phys. 2013, 15, 6406–6415.

152

Wen, F.; Yang, B.; Huang, G. J.; Zhang, S. H. Progress in application research of graphene-based conductive additive in lithium ion batteries. Electron. Compon. Mater. 2019, 38, 6–13.

153

Gao, P.; Zhang, Y. L.; Yan, J. Effects of graphene/carbon nanotube composite conductive agent to LiNi1/3Co1/3Mn1/3O2. Battery Bimon. 2017, 47, 339–342.

154

He, X. Z.; Hu, Y.; Deng, Z. D.; Kong, L. Y.; Shang, W. L. Effect of graphene composite conductive agent SP/CNTs/G on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery. Electron. Compon. Mater. 2016, 35, 77–82.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2021
Revised: 13 February 2021
Accepted: 15 February 2021
Published: 26 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors thank Shanshan Wang and Yangyong Sun from Peking university for their kind suggestions. This work was financially supported by the Ministry of Science and Technology of China (Nos. 2016YFA0200100 and 2018YFA0703502), the National Natural Science Foundation of China (Nos. 52021006, 51720105003, 21790052, and 21974004), the Strategic Priority Research Program of CAS (No. XDB36030100), and the Beijing National Laboratory for Molecular Sciences (No. BNLMS- CXTD-202001).

Return