Journal Home > Volume 14 , Issue 9

Nowadays, multi-shelled mesoporous hollow metal oxide nanospheres have drawn a lot of attention due to their large internal space, nanometer scaled shell thickness, high specific surface area and well-defined mesopores, of which unique nanostructure endows metallic oxides with enhanced properties. In this thesis, we have studied and proposed a versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxides and oxides nanospheres, in which silica nanospheres act as sacrificial templates and the coordination interaction between metal ions and surfactant can be cooperatively amplified by using chelating ligand (ascorbic acid) as a co-template. The synthesized metal hydroxides and oxides nanospheres possess stable hollow structure, uniform spherical morphology and tunable diameter from 270 to 690 nm. All the multi-shelled mesoporous hollow metal hydroxide and metal oxide nanospheres exhibit high surface areas (up to 640 m2/g). The obtained Au nanoparticles loaded composited nanospheres exhibit excellent reactivity for solvent-free aerobic oxidation of ethylbenzene with high activity (28.2%) and selectivity (87%).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors

Show Author's information Jingwei Liu1,§Yali Ma4,§Liangliang Zhang1Yuenan Zheng1Rui Zhang1Ling Zhang3Feng Wei2( )Zhen-An Qiao1( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Department of Hepatobiliary Pancreas Surgery, The First Hospital of Jilin University, Changchun 130021, China
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

§ Jingwei Liu and Yali Ma contributed equally to this work.

Abstract

Nowadays, multi-shelled mesoporous hollow metal oxide nanospheres have drawn a lot of attention due to their large internal space, nanometer scaled shell thickness, high specific surface area and well-defined mesopores, of which unique nanostructure endows metallic oxides with enhanced properties. In this thesis, we have studied and proposed a versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxides and oxides nanospheres, in which silica nanospheres act as sacrificial templates and the coordination interaction between metal ions and surfactant can be cooperatively amplified by using chelating ligand (ascorbic acid) as a co-template. The synthesized metal hydroxides and oxides nanospheres possess stable hollow structure, uniform spherical morphology and tunable diameter from 270 to 690 nm. All the multi-shelled mesoporous hollow metal hydroxide and metal oxide nanospheres exhibit high surface areas (up to 640 m2/g). The obtained Au nanoparticles loaded composited nanospheres exhibit excellent reactivity for solvent-free aerobic oxidation of ethylbenzene with high activity (28.2%) and selectivity (87%).

Keywords: mesoporous materials, hollow, multi-shelled structure, metal oxide nanospheres, aerobic catalytic oxidation

References(52)

[1]
Fang, X. L.; Zhao, X. J.; Fang, W. J.; Chen, C.; Zheng, N. F. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 2013, 5, 2205-2218.
[2]
Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A. M.; Zi, J. et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem., Int. Ed. 2014, 53, 5366-5370.
[3]
Lan, K.; Liu, Y.; Zhang, W.; Liu, Y.; Elzatahry, A.; Wang, R. C.; Xia, Y. Y.; Al-Dhayan, D.; Zheng, N. F.; Zhao, D. Y. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 2018, 140, 4135-4143.
[4]
Qiao, Z. A.; Zhang, L.; Guo, M. Y.; Liu, Y. L.; Huo, Q. S. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem. Mater. 2009, 21, 3823-3829.
[5]
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924-931.
[6]
Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356-7361.
[7]
Tian, H.; Wang, S. C.; Zhang, C.; Veder, J. P.; Pan, J.; Jaroniec, M.; Wang, L. Z.; Liu, J. Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J. Mater. Chem. A 2017, 5, 11615-11622.
[8]
Wang, T.; Guan, B. Y.; Wang, X.; Li, X.; Zhang, Y.; Qiao, Z. A.; Liu, Y. L.; Huo, Q. S. Mesostructured TiO2 gated periodic mesoporous organosilica-based nanotablets for multistimuli-responsive drug release. Small 2015, 11, 5907-5911.
[9]
Qiao, Z. A.; Guo, B. K.; Binder, A. J.; Chen, J. H.; Veith, G. M.; Dai, S. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Lett. 2013, 13, 207-212.
[10]
Ma, Y. L.; Zhang, Y.; Wang, X.; Fan, M. H.; Li, K. Q.; Wang, T.; Liu, Y. L.; Huo, Q. S.; Qiao, Z. A.; Dai, S. A chelation-induced cooperative self-assembly methodology for the synthesis of mesoporous metal hydroxide and oxide nanospheres. Nanoscale 2018, 10, 5731-5737.
[11]
Wang, L. M.; Tian, B. Z.; Fan, J.; Liu, X. Y.; Yang, H. F.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an “acid-base pair” route. Microporous Mesoporous Mater. 2004, 67, 123-133.
[12]
Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238-2241.
[13]
Jiao, C. W.; Wang, Z. M.; Zhao, X. X.; Wang, H.; Wang, J.; Yu, R. B.; Wang, D. Triple-shelled manganese-cobalt oxide hollow dodecahedra with highly enhanced performance for rechargeable alkaline batteries. Angew. Chem., Int. Ed. 2019, 58, 996-1001.
[14]
Ren, H.; Yu, R. B.; Qi, J.; Zhang, L. J.; Jin, Q.; Wang, D. Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 2019, 31, 1805754.
[15]
Huang, Z.; Pan, H. Y.; Yang, W. J.; Zhou, H. H.; Gao, N.; Fu, C. P.; Li, S. C.; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 2018, 12, 208-216.
[16]
Zhang, J. T.; Li, M.; Liang, X.; Zhuang, Z. B. Multishelled FeCo@FeCoP@C hollow spheres as highly efficient hydrogen evolution catalysts. ACS Appl. Mater. Interfaces 2019, 11, 1267-1273.
[17]
Xu, M.; Yu, Q.; Liu, Z. H.; Lv, J. S.; Lian, S. T.; Hu, B.; Mai, L. Q.; Zhou, L. Tailoring porous carbon spheres for supercapacitors. Nanoscale 2018, 10, 21604-21616.
[18]
Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182-1195.
[19]
Li, W.; Zhao, D. Y. Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. Adv. Mater. 2013, 25, 142-149.
[20]
Zhuo, S. F.; Shi, Y.; Liu, L. M.; Li, R. Y.; Shi, L.; Anjum, D. H.; Han, Y.; Wang, P. Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat. Commun. 2018, 9, 3132.
[21]
Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.
[22]
Wang, P. Y.; Sun, S. M.; Jiang, Y.; Cai, Q.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M.; Liu, J.; Yu, Y. Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance. ACS Nano 2020, 14, 15577-15586.
[23]
You, F. F.; Wan, J. W.; Qi, J.; Mao, D.; Yang, N. L.; Zhang, Q. H.; Gu, L.; Wang, D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew. Chem., Int. Ed. 2020, 59, 721-724.
[24]
Jin, R. X.; Yang, Y.; Xing, Y.; Chen, L.; Song, S. Y.; Jin, R. C. Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes. ACS Nano 2014, 8, 3664-3670.
[25]
Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865-4868.
[26]
Luo, D.; Deng, Y. P.; Wang, X. L.; Li, G. R.; Wu, J.; Fu, J.; Lei, W.; Liang, R. L.; Liu, Y. S.; Ding, Y. L. et al. Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 2017, 11, 11521-11530.
[27]
Wang, M. F.; Deng, K. R.; Lü, W.; Deng, X. R.; Li, K.; Shi, Y. S.; Ding, B. B.; Cheng, Z. Y.; Xing, B. G.; Han, G. et al. Rational design of multifunctional Fe@γ-Fe2O3@H-TiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: From photocatalysis to imaging-guided photothermal cancer therapy. Adv. Mater. 2018, 30, 1706747.
[28]
Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222-1244.
[29]
Alagarasi, A.; Rajalakshmi, P. U.; Shanthi, K.; Selvam, P. Solar-light driven photocatalytic activity of mesoporous nanocrystalline TiO2, SnO2, and TiO2-SnO2 composites. Mater. Today Sustain. 2019, 5, 100016.
[30]
Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046-1049.
[31]
Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.
[32]
Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013-6047.
[33]
Wang, H.; Qi, J.; Yang, N. L.; Cui, W.; Wang, J. Y.; Li, Q. H.; Zhang, Q. H.; Yu, X. Q.; Gu, L.; Li, J. et al. Dual-defects adjusted crystal-field splitting of LaCo1-xNixO3-δ hollow multishelled structures for efficient oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 19691-19695.
[34]
Wang, H.; Mao, D.; Qi, J.; Zhang, Q. H.; Ma, X. H.; Song, S. Y.; Gu, L.; Yu, R. B.; Wang, D. Hollow multishelled structure of heterogeneous Co3O4-CeO2-x nanocomposite for CO catalytic oxidation. Adv. Funct. Mater. 2019, 29, 1806588.
[35]
Li, B. T.; Huang, J.; Wang, X. J. Copper-cobalt bimetallic oxides-doped alumina hollow spheres: A highly efficient catalyst for epoxidation of styrene. Chem. Res. Chin. Univ. 2019, 35, 125-132.
[36]
Zhang, P. F.; Liu, H.; Liang, H. O.; Bai, J.; Li, C. P. Enhanced charge separation of α-Bi2O3-BiOI hollow nanotube for photodegradation antibiotic under visible light. Chem. Res. Chin. Univ. 2020, 36, 1227-1233.
[37]
Wang, H. H.; Zhu, X. H.; Yang, Y. L.; Chen, C. Y.; Lin, Q. Y.; He, Y.; Yin, X. F.; Lu, C. H.; Yang, H. H. Rational design of hollow multilayer heterogeneous organic framework for photochemical applications. Mater. Chem. Front. 2020, 4, 2646.
[38]
Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638-1646.
[39]
Florent, M.; Xue, C. F.; Zhao, D. Y.; Goldfarb, D. Formation mechanism of cubic mesoporous carbon monolith synthesized by evaporation-induced self-assembly. Chem. Mater. 2012, 24, 383-392.
[40]
Wei, H.; Lv, Y. Y.; Han, L.; Tu, B.; Zhao, D. Y. Facile synthesis of transparent mesostructured composites and corresponding crack-free mesoporous carbon/silica monoliths. Chem. Mater. 2011, 23, 2353-2360.
[41]
Yang, P. D.; Zhao, D. Y.; Margolese, D. L.; Chmelka, B. F.; Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11, 2813-2826.
[42]
Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246-262.
[43]
Yuan, C. H.; Wu, T.; Mao, J.; Chen, T.; Li, Y. T.; Li, M.; Xu, Y. T.; Zeng, B. R.; Luo, W. A.; Yu, L. K. et al. Predictable particle engineering: Programming the energy level, carrier generation, and conductivity of core-shell particles. J. Am. Chem. Soc. 2018, 140, 7629-7636.
[44]
Liu, Y. L.; Zhang, P. F.; Liu, J. M.; Wang, T.; Huo, Q. S.; Yang, L.; Sun, L.; Qiao, Z. A.; Dai, S. Gold cluster-CeO2 nanostructured hybrid architectures as catalysts for selective oxidation of inert hydrocarbons. Chem. Mater. 2018, 30, 8579-8586.
[45]
Zhang, P. F.; Qiao, Z. A.; Jiang, X. G.; Veith, G. M.; Dai, S. Nanoporous ionic organic networks: Stabilizing and supporting gold nanoparticles for catalysis. Nano Lett. 2015, 15, 823-828.
[46]
Gao, J.; Tong, X. L.; Li, X. Q.; Miao, H.; Xu, J. The efficient liquid-phase oxidation of aromatic hydrocarbons by molecular oxygen in the presence of MnCO3. J. Chem. Technol. Biotechnol. 2007, 82, 620-625.
[47]
Fu, L. L.; Zhao, S. F.; Chen, Y.; Liu, Z. G. One-pot synthesis of mesoporous silica hollow spheres with Mn-N-C integrated into the framework for ethylbenzene oxidation. Chem. Commun. 2016, 52, 5577-5580.
[48]
Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nat. Commun. 2015, 6, 6957.
[49]
Xu, S. D.; Li, H. X.; Du, J.; Tang, J. H.; Wang, L. Subnanometric gold clusters on CeO2 with maximized strong metal-support interactions for aerobic oxidation of carbon-hydrogen bonds. ACS Sustain. Chem. Eng. 2018, 6, 6418-6424.
[50]
Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.
[51]
Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.
[52]
Brutchey, R. L.; Drake, I. J.; Bell, A. T.; Tilley, T. D. Liquid-phase oxidation of alkylaromatics by a H-atom transfer mechanism with a new heterogeneous CoSBA-15 catalyst. Chem. Commun. 2005, 3736-3738.
File
12274_2021_3403_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2020
Revised: 21 January 2021
Accepted: 15 February 2021
Published: 27 March 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21671073 and 21621001), the "111" Project of the Ministry of Education of China (No. B17020), and Program for JLU Science and Technology Innovative Research Team.

Return