Journal Home > Volume 14 , Issue 11

Miniaturized mobile electronic devices have aroused great attention due to their convenience to daily life. However, they still face a problem that power supply from the conventional cell needs to be regularly charged or replaced. Portable electricity supply collecting energy from environment is highly desired. Herein, a highly flexible and stretchable Miura folding based triboelectric nanogenerator (MF-TENG) is prepared by using flexible polyethylene terephthalate (PET) as a folding substrate with a double working side design, specifically one side as the main TENG (M-TENG) and other side as the excitation TENG (E-TENG). The E-TENG supplements charge to M-TENG by a half-wave rectifier circuit. This design increases the TENG working area and reduces its volume. The output performance of the TENG based on Miura folding with charge excitation called MF-CE-TENG is greatly boosted. The optimal output charge and maximum peak power of MF-CE-TENG achieves 1.54 μC and 5.17 mW at 1 Hz, respectively, which is 4.61 and 10.55 times as much as that of MF-TENG without charge excitation. To demonstrate its applications, the MF-CE-TENG is used to light up 456 LEDs brightly and charge a 100 μF capacitor to 6.07 V in 5 min. A calculator and a temperature-humidity sensor work normally powered by MF-CE-TENG with an energy management module. This work provides a new strategy to enhance the output energy of Miura folding TENG by applying a charge excitation mode for the first time, which might be an effective approach to be used in other TENGs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Miura folding based charge-excitation triboelectric nanogenerator for portable power supply

Show Author's information Gui Li1,§Guanlin Liu1,2,§Wencong He1Li Long1Bangxing Li1Zhao Wang1Qian Tang1Wenlin Liu1( )Chenguo Hu1( )
Department of Applied Physics, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart MaterialsState Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing UniversityChongqing400044China
Center on Nanoenergy ResearchSchool of Physical Science and Technology, Guangxi UniversityNanning530004China

§ Gui Li and Guanlin Liu contributed equally to this work.

Abstract

Miniaturized mobile electronic devices have aroused great attention due to their convenience to daily life. However, they still face a problem that power supply from the conventional cell needs to be regularly charged or replaced. Portable electricity supply collecting energy from environment is highly desired. Herein, a highly flexible and stretchable Miura folding based triboelectric nanogenerator (MF-TENG) is prepared by using flexible polyethylene terephthalate (PET) as a folding substrate with a double working side design, specifically one side as the main TENG (M-TENG) and other side as the excitation TENG (E-TENG). The E-TENG supplements charge to M-TENG by a half-wave rectifier circuit. This design increases the TENG working area and reduces its volume. The output performance of the TENG based on Miura folding with charge excitation called MF-CE-TENG is greatly boosted. The optimal output charge and maximum peak power of MF-CE-TENG achieves 1.54 μC and 5.17 mW at 1 Hz, respectively, which is 4.61 and 10.55 times as much as that of MF-TENG without charge excitation. To demonstrate its applications, the MF-CE-TENG is used to light up 456 LEDs brightly and charge a 100 μF capacitor to 6.07 V in 5 min. A calculator and a temperature-humidity sensor work normally powered by MF-CE-TENG with an energy management module. This work provides a new strategy to enhance the output energy of Miura folding TENG by applying a charge excitation mode for the first time, which might be an effective approach to be used in other TENGs.

Keywords: triboelectric nanogenerator, Miura folding, charge excitation, half-wave rectifier circuit

References(44)

1

Patel, M.; Wang, J. F. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 2010, 17, 80-88.

2

Mojarradi, M.; Binkley, D.; Blalock, B.; Andersen, R.; Ulshoefer, N.; Johnson, T.; Del Castillo, L. A miniaturized neuroprosthesis suitable for implantation into the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 38-42.

3

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen. J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668-3720.

4

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

5

Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260-1269.

6

Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

7

Wang, P. H.; Pan, L.; Wang, J. Y.; Xu, M. Y.; Dai, G. Z.; Zou, H. Y.; Dong, K.; Wang, Z. L. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 2018, 12, 9433-9440.

8

Li, Y. J.; Cao, Q.; Zhang, W.; Zhang, Y.; Cao, J. N. A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils. Smart. Mater. Struct. 2018, 27, 115040.

9

Tan, Y. S.; Dong, Y.; Wang, X. H. Review of MEMS electromagnetic vibration energy harvester. J. Microelectromech. Syst. 2017, 26, 1-16.

10

Wang, S. W.; Bi, M. Z.; Cao, Z. Y.; Ye, X. Y. Linear freestanding electret generator for harvesting swinging motion energy: Optimization and experiment. Nano Energy 2019, 65, 104013.

11

Zhang, Y. L.; Wang, T. Y.; Luo, A. X.; Hu, Y. S.; Li, X. X.; Wang, F. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energ. 2018, 212, 362-371.

12

Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442-1451.

13

Fan, K. Q.; Tan, Q. X.; Zhang, Y. W.; Liu, S. H.; Cai, M. L.; Zhu, Y. M. A monostable piezoelectric energy harvester for broadband low-level excitations. Appl. Phys. Lett. 2018, 112, 123901.

14

Shan, X. B.; Li, H. L.; Yang, Y. C.; Feng, J.; Wang, Y. C.; Xie, T. Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy 2019, 172, 134-140.

15

Wang, J. L.; Zhou, S. X.; Zhang, Z. E.; Yurchenko, D. High- performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 2019, 181, 645-652.

16

Zhang, X. Q.; Pondrom, P.; Sessler, G. M.; Ma, X. C. Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy 2018, 50, 52-61.

17

Ueno, T. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. J. Appl. Phys. 2015, 117, 17A740.

18

Yang, Z. S.; Tang, L. H.; Tao, K.; Aw, K. A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 2019, 28, 10LT02.

19

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

20

Lin, Z. M.; Zhang, B. B.; Guo, H. Y.; Wu, Z. Y.; Zou, H. Y.; Yang, J.; Wang, Z. L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908

21

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34-51.

22

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576-3583.

23

Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

24

Liu, G. L.; Xiao, L. F.; Chen, C. Y.; Liu, W. L.; Pu, X. J.; Wu, Z. Y.; Hu, C. G.; Wang, Z. L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 2020, 75, 104975.

25

Tang, Q.; Guo, H. Y.; Yan, P.; Hu, C. G. Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat 2020, 2, e12060.

26

Xia, K. Q.; Zhang, H. Z.; Zhu, Z. Y.; Xu, Z. W. Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape. Sensor. Actuat. A-Phys. 2018, 272, 28-32.

27

An, J.; Wang, Z. M.; Jiang, T.; Liang, X.; Wang, Z. L. Whirling- folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1904867.

28

Tao, K.; Yi, H. P.; Yang, Y.; Chang, H. L.; Wu, J.; Tang, L. H.; Yang, Z. S.; Wang, N.; Hu, L. X.; Fu, Y. Q. et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 2020, 67, 104197.

29

Yang, H. M.; Deng, M. M.; Tang, Q.; He, W. C.; Hu, C. G.; Xi, Y.; Liu, R. C.; Wang, Z. L. A nonencapsulative pendulum-like paper- based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 2019, 9, 1901149.

30

Li, S. L. Double-folding paper-based generator for mechanical energy harvesting. Front. Optoelectron. 2017, 10, 38-43.

31
Chen, C.; Howard, D.; Zhang, S. L.; Do, Y.; Sun, S.; Cheng, T.; Wang, Z. L.; Abowd, G. D.; Oh, H. SPIN (Self-powered paper interfaces): Bridging triboelectric nanogenerator with folding paper creases. In Proceedings of the 14th International Conference on Tangible, Embedded, and Embodied Interaction, Sydney, NSW, Australia, 2020, pp 431-442.https://doi.org/10.1145/3374920.3374946
DOI
32

Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313-4322.

33

Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150-156.

34

Niu, S. M.; Liu, Y.; Zhou, Y. S.; Wang, S. H.; Lin, L.; Wang, Z. L. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Dev. 2015, 62, 641-647.

35

Schenk, M.; Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl. Acad. Sci. USA 2013, 110, 3276-3281.

36

Silverberg, J. L.; Evans, A. A.; McLeod, L.; Hayward, R. C.; Hull, T.; Santangelo, C. D.; Cohen, I. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 2014, 345, 647-650.

37

Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. P. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140.

38

Yasuda, H.; Yang, J. Reentrant origami-based metamaterials with negative poisson's ratio and bistability. Phys. Rev. Lett. 2015, 114, 185502.

39

Tao, K.; Yi, H. P.; Yang, Y.; Tang, L. H.; Yang, Z. S.; Wu, J.; Chang, H. L.; Yuan, W. Z. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsyst. Nanoeng. 2020, 6, 56.

40

Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

41

He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

42

Wang, Z.; Liu, W. L.; Hu, J. L.; He, W. C.; Yang, H. K.; Ling, C.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Two voltages in contact- separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy 2020, 69, 104452.

43

Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

44

Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441-455.

Video
12274_2021_3401_MOESM2_ESM.mp4
12274_2021_3401_MOESM3_ESM.mp4
12274_2021_3401_MOESM4_ESM.mp4
File
12274_2021_3401_MOESM6_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2020
Revised: 18 January 2021
Accepted: 10 February 2021
Published: 23 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52073037), the Fundamental Research Funds for the Central Universities (No. 2019CDXZWL001) and Chongqing graduate tutor team construction project (No. ydstd1832).

Return