Journal Home > Volume 14 , Issue 12

Lignin is the second most abundant and the only nature polymer rich in aromatic units. Although aromatic-unit-rich precursors often yield soft carbon after carbonization, the side chains in lignin crosslink with the aromatic units and form a rigid three-dimensional (3D) structure which eventually leads to hard carbons. Through a graphene oxide-catalyzed decomposition and repolymerization process, we successfully reconstructed lignin by partially tailoring the side chains. Compared to directly carbonized lignin, the carbonized reconstructed lignin possesses significantly fewer defects, 86% fewer oxygen-functionalities, 82% fewer micropores, and narrower interlayer space. These parameters can be tuned by the amount of catalysts (graphene oxide). When tested as anode for K-ion and Na-ion batteries, the carbonized reconstructed lignin delivers notably higher capacity at low-potential range (especially for Na-storage), shows much-improved performance at high current density, and most importantly, reduces voltage hysteresis between discharge and charge process by more than 50%, which is critical to the energy efficiency of the energy storage system. Our study reveals that the voltage hysteresis in K-storage is much severer than that in Na-storage for all samples. For practical K-ion battery applications, the voltage hysteresis deserves more attention in future electrode materials design and the reconstruct ion strategy introduced in this work provides potential low-cost solution.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis

Show Author's information Keren JiangXuehai TanShengli ZhaiKen CadienZhi Li( )
Department of Chemical and Materials Engineering University of AlbertaEdmonton, Alberta T6G 1H9 Canada

Abstract

Lignin is the second most abundant and the only nature polymer rich in aromatic units. Although aromatic-unit-rich precursors often yield soft carbon after carbonization, the side chains in lignin crosslink with the aromatic units and form a rigid three-dimensional (3D) structure which eventually leads to hard carbons. Through a graphene oxide-catalyzed decomposition and repolymerization process, we successfully reconstructed lignin by partially tailoring the side chains. Compared to directly carbonized lignin, the carbonized reconstructed lignin possesses significantly fewer defects, 86% fewer oxygen-functionalities, 82% fewer micropores, and narrower interlayer space. These parameters can be tuned by the amount of catalysts (graphene oxide). When tested as anode for K-ion and Na-ion batteries, the carbonized reconstructed lignin delivers notably higher capacity at low-potential range (especially for Na-storage), shows much-improved performance at high current density, and most importantly, reduces voltage hysteresis between discharge and charge process by more than 50%, which is critical to the energy efficiency of the energy storage system. Our study reveals that the voltage hysteresis in K-storage is much severer than that in Na-storage for all samples. For practical K-ion battery applications, the voltage hysteresis deserves more attention in future electrode materials design and the reconstruct ion strategy introduced in this work provides potential low-cost solution.

Keywords: polarization, batteries, lignin, voltage hysteresis, ring-forming defects

References(54)

1

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on k-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

2

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

3

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

4

Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; J. Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353–9378.

5

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

6

Liu, Y. Y.; Merinov, B. V.; Goddard III, W. A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.

7

Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

8

Wu, D.; Yang, B.; Chen, H.; Ruckenstein, E. New findings on an old question: Can defect-free graphene monolayers be superior metal-ion battery anodes? Adv. Sustain. Syst. 2020, 4, 1900152.

9

Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

10

Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

11

Ma, H. L.; Qi, X. J.; Peng, D. Q.; Chen, Y. X.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 2019, 4, 11488–11495.

12

Wang, L. L.; Lu, B.; Wang, S. S.; Cheng, W.; Zhao, Y. F.; Zhang, J. J.; Sun, X. L. Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. J. Mater. Chem. A 2019, 7, 11117–11126.

13

Fan, L. L.; Li, X. F.; Song, X. S.; Hu, N. N.; Xiong, D. B.; Koo, A.; Sun, X. L. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 2637–2648.

14

Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

15

Li, Z.; Liu, J.; Jiang, K. R.; Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016, 25, 161–169.

16

Li, Z.; Ahadi, K.; Jiang, K. R.; Ahvazi, B.; Li, P.; Anyia, A. O.; Cadien, K.; Thundat, T. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 2017, 10, 1847–1860.

17

Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141.

18

Zhu, J. H.; Roscow, J.; Chandrasekaran, S.; Deng, L. B.; Zhang, P. X.; He, T. S.; Wang, K.; Huang, L. C. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors. ChemSusChem 2020, 13, 1275–1295.

19

Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Harfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317–328.

20

Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 2014, 85, 78–96.

21

Jin, J.; Yu, B. J.; Shi, Z. Q.; Wang, C. Y.; Chong, C. B. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power Sources 2014, 272, 800–807.

22

Snowdon, M. R.; Mohanty, A. K.; Misra, M. A study of carbonized lignin as an alternative to carbon black. ACS Sustainable Chem. Eng. 2014, 2, 1257–1263.

23

Lin, X. Y.; Liu, Y. Z.; Tan, H.; Zhang, B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon 2020, 157, 316–323.

24

Zhang, Y.; Zhu, Y. Y.; Jiao, M. L.; Zhang, J.; Chen, M. M.; Wang, C. Y. Synthesis of size-controllable lignin-based nanosperes and its application in electrical double layer capacitors. ChemistrySelect 2020, 5, 8265–8273.

25

Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

26

Zhu, J. D.; Gao, Z.; Kowalik, M.; Joshi, K.; Ashraf, C. M.; Arefev, M. I.; Schwab, Y.; Bumgardner, C.; Brown, K.; Burden, D. E. et al. Unveiling carbon ring structure formation mechanisms in polyacrylonitrile-derived carbon fibers. ACS Appl. Mater. Interfaces 2019, 11, 42288–42297.

27
Patrick, J. W. Porosity in Carbons: Characterization and Applications; Edward Amold: London, 1995.
28

Yao, X. H.; Ke, Y. J.; Ren, W. H.; Wang, X. P.; Xiong, F. Y.; Yang, W.; Qin, M. S.; Li, Q.; Mai; L. Q. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1803260.

29

Liu, W. S.; Yao, Y. M.; Fu, O. L.; Jiang, S. H.; Fang, Y. C.; Wei, Y.; Lu, X. H. Lignin-derived carbon nanosheets for high-capacitance supercapacitors. RSC Adv. 2017, 7, 48537–48543.

30

Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

31

Kubota, K.; Shimadzu, S.; Yabuuchi, N.; Tominaka, S.; Shirashi, S.; Abreu-Speulveda, M.; Manivannan, A.; Gotoh, K.; Fukunishi, M.; Dahbi, M. et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 2020, 32, 2961–2977.

32

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

33

Wikberg, H.; Ohra-aho, T.; Pileidis, F.; Titirici, M. M. Structural and morphological changes in Kraft lignin during hydrothermal carbonization. ACS Sustainable Chem. Eng. 2015, 3, 2737–2745.

34

Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

35

Krishnan, D.; Raidongia, K.; Shao, J.; Huang, J. X. Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano 2014, 8, 449–457.

36

Bragg, W. H.; Bragg, W. L. The reflection of X-rays by crystals. Proc. Roy. Soc. A 1913, 88, 428–438.

37

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

38

Kipling, J. J.; Sherwood, J. N.; Shooter, P. V.; Thompson, N. R. The pore structure and surface area of high-temperature polymer carbons. Carbon 1964, 1, 321–328.

39

Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

40

Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.

41

Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

42

Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 2016, 6, 1501588.

43

Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

44

Stratford, J. M.; Allan, P. K.; Pecher, O.; Chater, P. A.; Grey, C. P. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 2016, 52, 12430–12433.

45

Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

46

Dreyer, W.; Jamnik, J.; Guhlke, C.; Huth, R.; Moškon, J.; Gaberšček, M. The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 2010, 9, 448–453.

47

Cui, Y. P.; Liu, W.; Wang, X.; Li, J. J.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Feng, W. T.; Chen, M. Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 2019, 13, 11582–11592.

48

Park, S. M.; Yoo, J. S. Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements: With impedance data, a complete description of an electrochemical system is possible. Anal. Chem. 2003, 75, 455 A–461 A.

49

Zabel, H.; Solin, S. A. Graphite Intercalation Compounds I: Structure and Dynamics. Springer: Berlin, 1990.

50

Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

51

Okamoto, Y. Density functional theory calculations of lithium adsorption and insertion to defect-free and defective graphene. J. Phys. Chem. C 2016, 120, 14009–14014.

52

Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.

53

Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

54

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

File
12274_2021_3399_MOESM1_ESM.pdf (5.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 November 2020
Revised: 28 January 2021
Accepted: 09 February 2021
Published: 29 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is funded by Alberta Innovates through the Alberta Bio Future, Lignin Challenge 1.0 and Lignin Pursuit subprograms. The authors would like to thank West Fraser for providing the lignin sample and Dr. Eddie Peace from West Fraser for the discussion and suggestions regarding lignin processing and handling.

Return