Journal Home > Volume 14 , Issue 9

Copper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations. Nevertheless, poor stability of the species severely hinders its isolation, storage and operation, which is worse for nano-sized ones. We report here an unprecedented strategy to access to ultrastable copper-hydride nanoclusters (NCs), namely, using bidentate N-heterocyclic carbenes as stabilizing ligands in addition to thiolates. In this work, a simple synthetic protocol was developed to synthesize the first large copper-hydride nanoclusters (NCs) stabilized by N-heterocyclic carbenes (NHCs). The NC, with the formula of Cu31(RS)25(NHC)3H6 (NHC = 1,4-bis(1-benzyl-1H-benzimidazol-1-ium-3-yl) butane, RS = 4-fluorothiophenol), was fully characterized by high resolution Fourier transform ion cyclotron resonance mass spectrum, nuclear magnetic resonance, ultra-violet visible spectroscopy, density functional theory (DFT) calculations and single-crystal X-ray crystallography. Structurally, the title cluster exhibits unprecedented Cu4 tetrahedron-based vertex-sharing (TBVS) superstructure (fusion of six Cu4 tetrahedra). Moreover, the ultrahigh thermal stability renders the cluster a model system to highlight the power of NHCs (even other carbenes) in controlling geometrical, electronic and surface structure of polyhydrido copper clusters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes

Show Author's information Hui Shen1Lingzheng Wang1Omar López-Estrada2Chengyi Hu1Qingyuan Wu1Dongxu Cao1Sami Malola2Boon K. Teo1Hannu Häkkinen2( )Nanfeng Zheng1( )
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Abstract

Copper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations. Nevertheless, poor stability of the species severely hinders its isolation, storage and operation, which is worse for nano-sized ones. We report here an unprecedented strategy to access to ultrastable copper-hydride nanoclusters (NCs), namely, using bidentate N-heterocyclic carbenes as stabilizing ligands in addition to thiolates. In this work, a simple synthetic protocol was developed to synthesize the first large copper-hydride nanoclusters (NCs) stabilized by N-heterocyclic carbenes (NHCs). The NC, with the formula of Cu31(RS)25(NHC)3H6 (NHC = 1,4-bis(1-benzyl-1H-benzimidazol-1-ium-3-yl) butane, RS = 4-fluorothiophenol), was fully characterized by high resolution Fourier transform ion cyclotron resonance mass spectrum, nuclear magnetic resonance, ultra-violet visible spectroscopy, density functional theory (DFT) calculations and single-crystal X-ray crystallography. Structurally, the title cluster exhibits unprecedented Cu4 tetrahedron-based vertex-sharing (TBVS) superstructure (fusion of six Cu4 tetrahedra). Moreover, the ultrahigh thermal stability renders the cluster a model system to highlight the power of NHCs (even other carbenes) in controlling geometrical, electronic and surface structure of polyhydrido copper clusters.

Keywords: stability, metal clusters, copper-hydride, N-heterocylic carbene, superatom

References(45)

[1]
Shi, S. L.; Wong, Z. L.; Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 2016, 532, 353-356.
[2]
Yang, Y.; Shi, S. L.; Niu, D. W.; Liu, P.; Buchwald, S. L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science 2015, 349, 62-66.
[3]
Zhu, S. L.; Niljianskul, N.; Buchwald, S. L. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination. Nat. Chem. 2016, 8, 144-150.
[4]
Zall, C. M.; Linehan, J. C.; Appel, A. M. Triphosphine-ligated copper hydrides for CO2 hydrogenation: Structure, reactivity, and thermodynamic studies. J. Am. Chem. Soc. 2016, 138, 9968-9977.
[5]
Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage metal hydrides: Synthesis, characterization, and reactivity. Chem. Rev. 2016, 116, 8318-8372.
[6]
Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975-5986.
[7]
Bezman, S. A.; Churchill, M. R.; Osborn, J. A.; Wormald, J. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am. Chem. Soc. 1971, 93, 2063-2065.
[8]
Lipshutz, B. H.; Frieman, B. A. CuH in a bottle: A convenient reagent for asymmetric hydrosilylations. Angew. Chem., Int. Ed. 2005, 44, 6345-6348.
[9]
Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. Selective hydride-mediated conjugate reduction of α,β-unsaturated carbonyl compounds using [(Ph3P)CuH]6. J. Am. Chem. Soc. 1988, 110, 291-293.
[10]
Lemmen, T. H.; Foiling, K.; Huffman, J. C.; Caulton, K. G. Copper polyhydrides. J. Am. Chem. Soc. 1985, 107, 7774-7775.
[11]
Yuan, P.; Chen, R. H.; Zhang, X. M.; Chen, F. J.; Yan, J. Z.; Sun, C. F.; Ou, D. H.; Peng, J.; Lin, S. C.; Tang, Z. C. et al. Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem., Int. Ed. 2019, 58, 835-839.
[12]
Liao, P. K.; Fang, C. S.; Edwards, A. J.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydrido copper clusters supported by dithiocarbamates: Oxidative hydride removal and neutron diffraction analysis of [Cu7(H){S2C(aza-15-crown-5)}6]. Inorg. Chem. 2012, 51, 6577-6591.
[13]
Edwards, A. J.; Dhayal, R. S.; Liao, P. K.; Liao, J. H.; Chiang, M. H.; Piltz, R. O.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Chinese puzzle molecule: A 15 hydride, 28 copper atom nanoball. Angew. Chem., Int. Ed. 2014, 53, 7214-7218.
[14]
Dhayal, R. S.; Liao, J. H.; Kahlal, S.; Wang, X. P.; Liu, Y. C.; Chiang, M. H.; van Zyl, W. E.; Saillard, J. Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The largest number of hydrides recorded in a molecular nanocluster by neutron diffraction. Chem.—Eur. J. 2015, 21, 8369-8374.
[15]
Dhayal, R. S.; Liao, J. H.; Wang, X. P.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Diselenophosphate-induced conversion of an achiral [Cu20H11{S2P(OiPr)2}9] into a chiral [Cu20H11{Se2P(OiPr)2}9] polyhydrido nanocluster. Angew. Chem., Int. Ed. 2015, 54, 13604-13608.
[16]
Lee, S.; Bootharaju, M. S.; Deng, G.; Malola, S.; Baek, W.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. [Cu32(PET)24H8Cl2](PPh4)2: A copper hydride nanocluster with a bisquare antiprismatic core. J. Am. Chem. Soc. 2020, 142, 13974-13981.
[17]
Huang, R. W.; Yin, J.; Dong, C. W.; Ghosh, A.; Alhilaly, M. J.; Dong, X. L.; Hedhili, M. N.; Abou-Hamad, E.; Alamer, B.; Nematulloev, S. et al. [Cu81(PhS)46(tBuNH2)10(H)32]3+ reveals the coexistence of large planar cores and hemispherical shells in high-nuclearity copper nanoclusters. J. Am. Chem. Soc. 2020, 142, 8696-8705.
[18]
Li, J. Y.; Ma, H. Z.; Reid, G. E.; Edwards, A. J.; Hong, Y. N.; White, J. M.; Mulder, R. J.; O'Hair, R. A. J. Synthesis and X-ray crystallographic characterisation of frustum-shaped ligated [Cu18H16(DPPE)6]2+ and [Cu16H14(DPPA)6]2+ nanoclusters and studies on their H2 evolution reactions. Chem.—Eur. J. 2018, 24, 2070-2074.
[19]
Nguyen, T. A.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 2015, 137, 13319-13324.
[20]
Sun, C. F.; Teo, B. K.; Deng, C. L.; Lin, J. Q.; Luo, G. G.; Tung, C. H.; Sun, D. Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coordin. Chem. Rev. 2021, 427, 213576.
[21]
Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485-496.
[22]
Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986-5056.
[23]
Zhao, Q.; Meng, G. R.; Nolan, S. P.; Szostak, M. N-Heterocyclic carbene complexes in C-H activation reactions. Chem. Rev. 2020, 120, 1981-2048.
[24]
Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene ligands in surface chemistry: From stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 2015, 115, 11503-11532.
[25]
Robilotto, T. J.; Bacsa, J.; Gray, T. G.; Sadighi, J. P. Synthesis of a trigold monocation: An isolobal analogue of [H3]+. Angew. Chem., Int. Ed. 2012, 51, 12077-12080.
[26]
Jin, L. Q.; Weinberger, D. S.; Melaimi, M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Trinuclear gold clusters supported by cyclic (alkyl)(amino)carbene ligands: Mimics for gold heterogeneous catalysts. Angew. Chem., Int. Ed. 2014, 53, 9059-9063.
[27]
Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419-425.
[28]
Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997-15002.
[29]
Shen, H.; Xiang, S. J; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
[30]
Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Hakkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731-17735.
[31]
Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 133, 3796-3802.
[32]
Khalili Najafabadi, B. Corrigan, J. F. N-Heterocyclic carbene stabilized Ag-P nanoclusters. Chem. Commun. 2015, 51, 665-667.
[33]
Peltier, J. L.; Soleilhavoup, M.; Martin, D.; Jazzar, R.; Bertrand, G. Absolute templating of M(111) cluster surrogates by galvanic exchange. J. Am. Chem. Soc. 2020, 142, 16479-16485.
[34]
Makarem, A.; Berg, R.; Rominger, F.; Straub, B. F. A fluxional copper acetylide cluster in CuAAC catalysis. Angew. Chem., Int. Ed. 2015, 54, 7431-7435.
[35]
Humenny, W. J.; Mitzinger, S.; Khadka, C. B.; Najafabadi, B. K.; Vieira, I.; Corrigan, J. F. N-Heterocyclic carbene stabilized copper- and silver-phenylchalcogenolate ring complexes. Dalton Trans. 2012, 41, 4413-4422.
[36]
Drescher, W.; Borner, C.; Kleeberg, C. Stability and decomposition of copper(I) boryl complexes: [(IDipp)Cu-Bneop], [(IDipp*)Cu-Bneop] and copper clusters. New J. Chem., in press, .
[37]
Chen, C.; Qiu, H. Y.; Chen, W. Z. Trinuclear copper(I) complex of 1,3-bis(2-pyridinylmethyl)imidazolylidene as a carbene-transfer reagent for the preparation of catalytically active nickel(II) and palladium(II) complexes. J. Organomet. Chem. 2012, 696, 4166-4172.
[38]
Korotkikh, N. I.; Saberov, V. S.; Kiselev, A. V.; Glinyanaya, N. V.; Marichev, K. A.; Pekhtereva, T. M.; Dudarenko, G. V.; Bumagin, N. A.; Shvaika, O. P. Heterocyclic carbene complexes of nickel, palladium, and copper(I) as effective catalysts for the reduction of ketones. Chem. Heterocycl. Comp. 2012, 47, 1551-1560.
[39]
Yuan, X. T.; Sun, C. F.; Li, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Combinatorial identification of hydrides in a ligated Ag40 nanocluster with noncompact metal core. J. Am. Chem. Soc. 2019, 141, 11905-11911.
[40]
Han, B. L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R. K.; Aikens, C. M.; Tung, C. H.; Sun, D. Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral [Cu4]0 kernel. J. Am. Chem. Soc. 2020, 142, 5834-5841.
[41]
Zeng, C. J.; Chen, Y. X.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. C. Gold tetrahedra coil up: Kekulé-like and double helical superstructures. Sci. Adv. 2015, 1, e1500425.
[42]
Qu, M.; Zhang, F. Q.; Wang, D. H.; Li, H.; Hou, J. J.; Zhang, X. M. Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 6507-6512.
[43]
Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157-9162.
[44]
Ghosh, A.; Huang, R. W.; Alamer, B.; Abou-Hamad, E.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M. [Cu61(StBu)26S6Cl6H14]+: A core-shell superatom nanocluster with a Quasi-J36 Cu19 core and an “18-Crown-6” metal-sulfide-like stabilizing belt. ACS Materials Lett. 2019, 1, 297-302.
[45]
Chen, A. L.; Kang, X.; Jin, S.; Du, W. J.; Wang, S. X.; Zhu, M. Z. Gram-scale preparation of stable hydride M@Cu24 (M = Au/Cu) nanoclusters. J. Phys. Chem. Lett. 2019, 10, 6124-6128.
File
12274_2021_3389_MOESM1_ESM.pdf (3.5 MB)
12274_2021_3389_MOESM2_ESM.mpg (22.2 MB)
12274_2021_3389_MOESM3_ESM.mpg (21.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 December 2020
Revised: 05 February 2021
Accepted: 08 February 2021
Published: 23 March 2021
Issue date: September 2021

Copyright

© The Author(s) 2021

Acknowledgements

We thank the National Key R&D Program of China (No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21890752, 21731005, 21420102001, and 21721001) and the 111 Project (No. B08027) for financial support. The computational work in the University of Jyväskylä was supported by the Academy of Finland through HH’s Academy Professorship and grants 292352, 319208. H. H. acknowledges support from China’s National Innovation and Intelligence Introduction Base visitor program. The computations were made at the CSC supercomputing center in Finland. We thank L. Feng from High-Field Nuclear Magnetic Resonance Research Center (Xiamen University) for the help in the NMR studies.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return