AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Developments in stability and passivation strategies for black phosphorus

Haizeng Song1Han Wu1Tianqi Ren1Shancheng Yan2( )Tianhong Chen1Yi Shi1,3( )
Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
School of Geography and Biological InformationNanjing University of Posts and TelecommunicationsNanjing210023China
National Laboratory of Solid State Microstructures, School of Electronic Science and EngineeringNanjing UniversityNanjing210093China
Show Author Information

Graphical Abstract

Abstract

Black phosphorus (BP), a promising two-dimensional layer material, has attracted increasing attention due to its high carrier mobility, thickness-dependent tunable bandgap, in-plane anisotropy, and other advantageous characteristics. Because of these excellent characteristics, BP has been considered for applications in optics, electronics, optoelectronics, sensors, and energy storage. However, early studies found that BP has high chemical activity due to the lone pair electrons of P atoms on the surface and edges, resulting in rapid degradation under ambient conditions and limiting many applications. Recently, these thorny issues have been alleviated through superior physical and chemical passivation techniques, and passivated BP can be used in various devices under ambient and water conditions with excellent performance over a long period. This review, highlights the critical problems addressed in solving the serious instability of BP in a harsh environment by effective passivation technology. These unique strategies can provide more researchers with a fundamental study of the fascinating properties of BP. Finally, we found that passivated BP not only showed good stability under ambient conditions but also exhibited excellent performance compared with the original BP. Therefore, it is anticipated that this overview can contribute to the application of BP.

References

1

Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.

2

Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

3

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

4

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

5

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

6

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

7

Carbone, M. G. P.; Manikas, A. C.; Souli, I.; Pavlou, C.; Galiotis, C. Mosaic pattern formation in exfoliated graphene by mechanical deformation. Nat. Commun. 2019, 10, 1572.

8

Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S. B. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.

9

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

10

Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

11

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

12

Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Integrating high-quality dielectrics with one-nanometer equivalent oxide thickness on two- dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

13

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

14

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

15

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

16

Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K. Q.; Nagler, P.; Holler, J.; Schüller, C.; Lupton, J. M.; Korn, T. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 2019, 18, 691–696.

17

Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

18

Zhou, L. Y.; Yan, S. C.; Pan, L. J.; Wang, X. R.; Wang, Y. Q.; Shi, Y. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Res. 2016, 9, 857–865.

19

Lee, H.; Bak, S.; Kim, J.; Lee, H. The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 2021, 14, 198–204.

20

Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium- ion battery anode. Nano Res. 2019, 12, 2997–3002.

21

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

22

Zhang, G. W.; Huang, S. Y.; Chaves, A.; Song, C. Y.; Özçelik, V. O.; Low, T.; Yan, H. G. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.

23

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

24

Zhang, G. W.; Chaves, A.; Huang, S. Y.; Wang, F. J.; Xing, Q. X.; Low, T.; Yan, H. G. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977.

25

Sang, D. K.; Wang, H. D.; Guo, Z. N.; Xie, N.; Zhang, H. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 2019, 29, 1903419.

26

Xiao, Z. R.; Qiao, J. S.; Lu, W. L.; Ye, G. J.; Chen, X. H.; Zhang, Z.; Ji, W.; Li, J. X.; Jin, C. H. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res. 2017, 10, 2519–2526.

27

Zhao, J. L.; Zhu, J. J.; Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Tang, J. N.; Fan, D. Y.; Li, J. Q.; Zhang, H. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 2019, 10, 4062.

28

Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

29

Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.

30

Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 2015, 6, 7809.

31

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

32

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

33

Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

34

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

35

Tan, S. J. R.; Abdelwahab, I.; Chu, L. Q.; Poh, S. M.; Liu, Y. P.; Lu, J.; Chen, W.; Loh, K. P. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619.

36

Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

37

Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

38

Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

39

Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 2019, 5, eaau3194.

40

Kim, S.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Jin, T.; Chang, S.; Watanabe, K.; Taniguchi, T.; Cho, S. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 2020, 15, 203–206.

41

Li, H.; Tie, J.; Li, J. Z.; Ye, M.; Zhang, H.; Zhang, X. Y.; Pan, Y. Y.; Wang, Y. Y.; Quhe, R.; Pan, F. et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res. 2018, 11, 2658–2668.

42

Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R.; Wang, Y. Y.; Guo, Y.; Zhang, H.; Dan, Y.; Song, Z. G.; Li, J. Z. et al. Three-layer phosphorene-metal interfaces. Nano Res. 2018, 11, 707–721.

43

Wu, X. J.; Xu, Y. J.; Hu, Y.; Wu, G.; Cheng, H. Y.; Yu, Q.; Zhang, K.; Chen, W.; Chen, S. Microfluidic-spinning construction of black- phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat. Commun 2018, 9, 4573.

44

Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high- capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

45

Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

46

Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.

47

Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 2014, 4, 6452.

48

Duan, S.; Cui, Y. F.; Chen, X.; Yi, W. C.; Liu, Y. X.; Liu, X. B. Ultrahigh thermoelectric performance realized in black phosphorus system by favorable band engineering through group VA doping. Adv. Funct. Mater. 2019, 29, 1904346.

49

Viti, L.; Politano, A.; Zhang, K.; Vitiello, M. S. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 2019, 11, 1995–2002.

50

Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

51

Yan, S. C.; Wang, B. J.; Wang, Z. L.; Hu, D.; Xu, X.; Wang, J. Z.; Shi, Y. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 2016, 80, 34–38.

52

Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid- wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

53

Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

54

He, J. S.; Tao, L. L.; Zhang, H.; Zhou, B.; Li, J. B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593.

55

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

56

Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

57

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A. L.; Tang, N. Y. W.; Lèvesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.

58

Zheng, Y.; Hu, Z. H.; Han, C.; Guo, R.; Xiang, D.; Lei, B.; Wang, Y. N.; He, J.; Lai, M.; Chen, W. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 2019, 12, 531–536.

59

Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem. , Int. Ed. 2016, 55, 11437–11441.

60

Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z. Y.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. , Int. Ed. 2017, 56, 9131–9135.

61

Hu, Z. X.; Kong, X. H.; Qiao, J. S.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740–2750.

62

Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170–8175.

63

Zhang, Q. Z.; Huang, S. Y.; Deng, J. J.; Gangadharan, D. T.; Yang, F.; Xu, Z. H.; Giorgi, G.; Palummo, M.; Chaker, M.; Ma, D. L. Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution. Adv. Funct. Mater. 2019, 29, 1902486.

64

Wild, S.; Fickert, M.; Mitrovic, A.; Lloret, V.; Neiss, C.; Vidal-Moya, J. A.; Rivero-Crespo, M. Á.; Leyva-Pérez, A.; Werbach, K.; Peterlik, H. et al. Lattice opening upon bulk reductive covalent functionalization of black phosphorus. Angew. Chem. , Int. Ed. 2019, 58, 5763–5768.

65

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

66

Li, Y. Y.; Lin, S. H.; Liu, Y. H.; Chai, Y.; Lau, S. P. Tunable Schottky barriers in ultrathin black phosphorus field effect transistors via polymer capping. 2D Mater. 2019, 6, 024001.

67

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene- contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

68

Liu, Y. P.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L. J.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J. P.; Bao, Y.; Xu, H. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. Nat. Nanotechnol. 2018, 13, 828–834.

69

Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene- black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145.

70

Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

71

Doganov, R. A.; O'Farrell, E. C. T.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 2015, 6, 6647.

72

Sinha, S.; Takabayashi, Y.; Shinohara, H.; Kitaura, R. Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method. 2D Mater. 2016, 3, 035010.

73

Kim, J. S.; Liu, Y. N.; Zhu, W. N.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K. J.; Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 8989.

74

Favron, A.; Gaufrès, E.; Fossard, F.; Lévesque, P. L.; Phaneuf- L'Heureux, A. L.; Tang, N. Y. W.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Exfoliating pristine black phosphorus down to the monolayer: Photo-oxidation and electronic confinement effects. Physics 2014, 1 708–712.

75

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha- Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

76

Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.

77

Gamage, S.; Fali, A.; Aghamiri, N.; Yang, L.; Ye, P. D.; Abate, Y. Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology 2017, 28, 265201.

78

Gamage, S.; Li, Z.; Yakovlev, V. S.; Lewis, C.; Wang, H.; Cronin, S. B.; Abate, Y. Nanoscopy of black phosphorus degradation. Adv. Mater. Interfaces 2016, 3, 1600121.

79

Wei, Q. Q.; He, J. T.; Yang, S. L.; Jia, H. Y.; Liu, Y. Y.; Liu, W.; Liu, Y.; Li, T. Z. Investigation of black phosphorus field-effect transistors and its stability. Opt. Quant. Electron. 2016, 48, 344.

80

Xing, B. R.; Guan, L.; Yu, Y.; Niu, X. Y.; Yan, X. Y.; Zhang, S. C.; Yao, J. D.; Wang, D.; Sha, J.; Wang, Y. W. HfO2-passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio. Nanotechnology 2019, 30, 345208.

81

Ho, P. H.; Li, M. K.; Sankar, R.; Shih, F. Y.; Li, S. S.; Chang, Y. R.; Wang, W. H.; Chou, F. C.; Chen, C. W. Tunable photoinduced carrier transport of a black phosphorus transistor with extended stability using a light-sensitized encapsulated layer. ACS Photonics 2016, 3, 1102–1108.

82

Galceran, R.; Gaufres, E.; Loiseau, A.; Piquemal-Banci, M.; Godel, F.; Vecchiola, A.; Bezencenet, O.; Martin, M. B.; Servet, B.; Petroff, F. et al. Stabilizing ultra-thin black phosphorus with in-situ-grown 1 nm-Al2O3 barrier. Appl. Phys. Lett. 2017, 111, 243101.

83

Son, Y.; Kozawa, D.; Liu, A. T.; Koman, V. B.; Wang, Q. H.; Strano, M. S. A study of bilayer phosphorene stability under MoS2-passivation. 2D Mater. 2017, 4, 025091.

84

Kim, J.; Baek, S. K.; Kim, K. S.; Chang, Y. J.; Choi, E. J. Long-term stability study of graphene-passivated black phosphorus under air exposure. Curr. Appl. Phys. 2016, 16, 165–169.

85

de Visser, P. J.; Chua, R.; Island, J. O.; Finkel, M.; Katan, A. J.; Thierschmann, H.; van der Zant, H. S. J.; Klapwijk, T. M. Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Mater. 2016, 3, 021002.

86

Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 2015, 26, 435702.

87

Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.

88

Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O'Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Castro Neto, A. H.; Fuhrer, M. S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 14557–14562.

89

Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem. , Int. Ed. 2016, 55, 14557–14562.

90

Wang, H. Y.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z. G.; Li, Z. Black phosphorus nanosheets passivation using a tripeptide. Small 2018, 14, 1801701.

91

Li, P.; Zhang, D. Z.; Liu, J. J.; Chang, H. Y.; Sun, Y. E.; Yin, N. L. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 2015, 7, 24396–24402.

92

Li, D.; Castillo, A. E. D. R.; Jussila, H.; Ye, G. J.; Ren, Z. Y.; Bai, J. T.; Chen, X. H.; Lipsanen, H.; Sun, Z. P.; Bonaccorso, F. Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 2016, 4, 17–23.

93

Zhang, Y. Q.; Dong, N. N.; Tao, H. C.; Yan, C.; Huang, J. W.; Liu, T. F.; Robertson, A. W.; Texter, J.; Wang, J.; Sun, Z. Y. Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29, 6445–6456.

94

Korolkov, V. V.; Timokhin, I. G.; Haubrichs, R.; Smith, E. F.; Yang, L. X.; Yang, S. H.; Champness, N. R.; Schröder, M.; Beton, P. H. Supramolecular networks stabilise and functionalise black phosphorus. Nat. Commun. 2017, 8, 1385.

95

Zhao, Y. H.; Zhou, Q. H.; Li, Q.; Yao, X. J.; Wang, J. L. Passivation of black phosphorus via self-assembled organic monolayers by van der waals epitaxy. Adv. Mater. 2017, 29, 1603990.

96

Zhang, Q. K.; Liu, Y. N.; Lai, J. W.; Qi, S. M.; An, C. H.; Lu, Y.; Duan, X. X.; Pang, W.; Zhang, D. H.; Sun, D. et al. Liquid phase mass production of air-stable black phosphorus/phospholipids nano­composite with ultralow tunneling barrier. 2D Mater. 2018, 5, 025012.

97

Kumar, A. Simultaneous passivation and encapsulation of black phosphorus nanosheets (phosphorene) by optically active polypeptide micelles for biosensors. ACS Appl. Nano Mater. 2019, 2, 2397–2404.

98

Wild, S.; Lloret, V.; Vega-Mayoral, V.; Vella, D.; Nuin, E.; Siebert, M.; Koleśnik-Gray, M.; Löffler, M.; Mayrhofer, K. J. J.; Gadermaier, C. et al. Monolayer black phosphorus by sequential wet-chemical surface oxidation. RSC Adv. 2019, 9, 3570–3576.

99

Lloret, V.; Nuin, E.; Kohring, M.; Wild, S.; Löffler, M.; Neiss, C.; Krieger, M.; Hauke, F.; Görling, A.; Weber, H. B. et al. Noncovalent functionalization and passivation of black phosphorus with optimized perylene diimides for hybrid field effect transistors. Adv. Mater. Interfaces 2020, 7, 2001290.

100

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

101

Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

102

Hu, H. G.; Gao, H.; Gao, L. L.; Li, F.; Xu, N.; Long, X. F.; Hu, Y. P.; Jin, J.; Ma, J. T. Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 2018, 10, 5834–5839.

103

Wei, Y. Q.; Fang, W. H.; Long, R. Covalent functionalized black phosphorus greatly inhibits nonradiative charge recombination: A time domain ab initio study. J. Phys. Chem. Lett. 2020, 11, 478–484.

104

Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

105

Sofer, Z.; Luxa, J.; Bouša, D.; Sedmidubský, D.; Lazar, P.; Hartman, T.; Hardtdegen, H.; Pumera, M. The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem. , Int. Ed. 2017, 56, 9891–9896.

106

van Druenen, M.; Davitt, F.; Collins, T.; Glynn, C.; O'Dwyer, C.; Holmes, J. D.; Collins, G. Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 2018, 30, 4667–4674.

107

Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. , Int. Ed. 2016, 55, 5003–5007.

108

Feng, Q. L.; Liu, H. Y.; Zhu, M. J.; Shang, J.; Liu, D.; Cui, X. Q.; Shen, D. Q.; Kou, L. Z.; Mao, D.; Zheng, J. B. et al. Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 2018, 10, 9679–9687.

109

Liu, Y. J.; Gao, P. F.; Zhang, T. M.; Zhu, X. J.; Zhang, M. M.; Chen, M. Q.; Du, P. W.; Wang, G. W.; Ji, H. X.; Yang, J. L. et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement. Angew. Chem. , Int. Ed. 2019, 58, 1479–1483.

110

Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002.

111

Yan, S. C.; Song, H. Z.; Wan, L. F.; Lin, S. R.; Wu, H.; Shi, Y.; Yao, J. Hydroxyl-assisted phosphorene stabilization with robust device performances. Nano Lett. 2020, 20, 81–87.

112

Wu, S.; He, F.; Xie, G. X.; Bian, Z. L.; Luo, J. B.; Wen, S. Z. Black phosphorus: Degradation favors lubrication. Nano Lett. 2018, 18, 5618–5627.

113

Yang, S.; Kim, A.; Park, J.; Kwon, H.; Lanh, P. T.; Hong, S.; Kim, K. J.; Kim, J. W. Thermal annealing of black phosphorus for etching and protection. Appl. Surf. Sci. 2018, 457, 773–779.

114

Mitrović, A.; Wild, S.; Lloret, V.; Fickert, M.; Assebban, M.; Márkus, B. G.; Simon, F.; Hauke, F.; Abellán, G.; Hirsch, A. Interface amorphization of two-dimensional black phosphorus upon treatment with diazonium salts. Chem. –Eur. J. 2020, 27, 3361–3366.

115

Jellett, C.; Plutnar, J.; Pumera, M. Prospects for functionalizing elemental 2D pnictogens: A study of molecular models. ACS Nano 2020, 14, 7722–7733.

116

Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

117

Li, X. B.; Guo, P.; Cao, T. F.; Liu, H.; Lau, W. M.; Liu, L. M. Structures, stabilities and electronic properties of defects in monolayer black phosphorus. Sci. Rep. 2015, 5, 10848.

118

Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

119

Feng, X. W.; Kulish, V. V.; Wu, P.; Liu, X. K.; Ang, K. W. Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study. Nano Res. 2016, 9, 2687–2695.

120

Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

121

Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145–2151.

122

Lv, W. M.; Yang, B. C.; Wang, B. C.; Wan, W. H.; Ge, Y. F.; Yang, R. L.; Hao, C. X.; Xiang, J. Y.; Zhang, B. S.; Zeng, Z. M. et al. Sulfur- doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces 2018, 10, 9663–9668.

123

Caporali, M.; Serrano-Ruiz, M.; Telesio, F.; Heun, S.; Verdini, A.; Cossaro, A.; Dalmiglio, M.; Goldoni, A.; Peruzzini, M. Enhanced ambient stability of exfoliated black phosphorus by passivation with nickel nanoparticles. Nanotechnology 2020, 31, 275708.

124

Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

125

Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. 2015, 51, 12068–12071.

126

Zhang, W. T.; Wang, Y. R.; Zhang, D. H.; Yu, S. X.; Zhu, W. X.; Wang, J.; Zheng, F. Q.; Wang, S. X.; Wang, J. L. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale 2015, 7, 10210–10217.

127

Zhao, W. C.; Xue, Z. M.; Wang, J. F.; Jiang, J. Y.; Zhao, X. H.; Mu, T. C. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 2015, 7, 27608–27612.

128

Chaban, V. V.; Fileti, E. E.; Prezhdo, O. V. Imidazolium ionic liquid mediates black phosphorus exfoliation while preventing phosphorene decomposition. ACS Nano 2017, 11, 6459–6466.

129

Abellán, G.; Wild, S.; Lloret, V.; Scheuschner, N.; Gillen, R.; Mundloch, U.; Maultzsch, J.; Varela, M.; Hauke, F.; Hirsch, A. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017, 139, 10432–10440.

130

Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M. D.; Weerathunge, P.; Karim, N.; Rahman, F.; Rassell, A. et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 2017, 29, 1700152.

131

Lloret, V.; Ángel Rivero-Crespo, M.; Alejandro Vidal-Moya, J.; Wild, S.; Doménech-Carbó, A.; Heller, B. S. J.; Shin, S.; Steinrück, H. P.; Maier, F.; Hauke, F. et al. Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nat. Commun. 2019, 10, 509.

132

Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.

133

Hu, C. X.; Xiao, Q.; Ren, Y. Y.; Zhao, M.; Dun, G. H.; Wu, H. R.; Li, X. Y.; Yang, Q. Q.; Sun, B.; Peng, Y. et al. Polymer ionic liquid stabilized black phosphorus for environmental robust flexible optoelectronics. Adv. Funct. Mater. 2018, 28, 1805311.

134

Tejeda-Serrano, M.; Lloret, V.; Márkus, B. G.; Simon, F.; Hauke, F.; Hirsch, A.; Doménech-Carbó, A.; Abellan, G.; Leyva-Pérez, A. Few-layer black phosphorous catalyzes radical additions to alkenes faster than low-valence metals. ChemCatChem 2020, 12, 2226–2232.

135

Abellán, G.; Neiss, C.; Lloret, V.; Wild, S.; Chacón-Torres, J. C.; Werbach, K.; Fedi, F.; Shiozawa, H.; Görling, A.; Peterlik, H. et al. Exploring the formation of black phosphorus intercalation compounds with alkali metals. Angew. Chem. , Int. Ed. 2017, 56, 15267–15273.

136

Zhang, L.; Gao, L. F.; Li, L. X.; Hu, C. X.; Yang, Q. Q.; Zhu, Z. Y.; Peng, R.; Wang, Q.; Peng, Y.; Jin, J. et al. Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2018, 2, 1700–1706.

137

Wild, S.; Dinh, X. T.; Maid, H.; Hauke, F.; Abellán, G.; Hirsch, A. Quantifying the covalent functionalization of black phosphorus. Angew. Chem. , Int. Ed. 2020, 59, 20230–20234.

Nano Research
Pages 4386-4397
Cite this article:
Song H, Wu H, Ren T, et al. Developments in stability and passivation strategies for black phosphorus. Nano Research, 2021, 14(12): 4386-4397. https://doi.org/10.1007/s12274-021-3385-0
Topics:

999

Views

24

Crossref

24

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 19 October 2020
Revised: 17 January 2021
Accepted: 05 February 2021
Published: 23 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return