Journal Home > Volume 14 , Issue 12

To data, using strong metal-support interaction (SMSI) effect to improve the catalytic performance of metal catalysts is an important strategy for heterogeneous catalysis, and this effect is basically achieved by using reducible metal oxides. However, the formation of SMSI between metal and inert-support has been so little coverage and remains challenge. In this work, the SMSI effect can be effectively extended to the inert support-metal catalysis system to fabricate a Cu0/Cu-doped SiO2 catalyst with high dispersion and loading (38.5 wt.%) through the interfacial effect of inert silica. In the catalyst, subnanometric composite of Cu cluster and atomic copper (in the configuration of Cu–O–Si) can be consciously formed on the silica interface, and verified by extended X-ray absorption fine structure (EXAFS), in situ X-ray photoelectron spectroscopy (XPS), and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) characterization. The promoting activity in transfer-hydrogenation by the SMSI effect of Cu-silica interface and the synergistic active roles of cluster and atomic Cu have also been revealed from surface interface structure, catalytic activity, and density functional theory (DFT) theoretical calculation at an atomic level. The subnanometric composite of cluster and atomic copper species can be derived from a facile synthesis strategy of metal-inert support SMSI effect and the realistic active site of Cu-based catalyst can also been identified accurately, thus it will help to expand the application of subnanometric materials in industrial catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation

Show Author's information Ruoyu Fan1,§Yange Zhang1,§Zhi Hu1,2,§Chun Chen1( )Tongfei Shi1Lirong Zheng3Haimin Zhang1Junfa Zhu4Huijun Zhao1,5( )Guozhong Wang1( )
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031 China
Science Island Branch of Graduate School University of Science and Technology of ChinaHefei 230026 China
Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of SciencesBeijing 100049 China
National Synchrotron Radiation Laboratory University of Science and Technology of ChinaHefei 230026 China
Center for Clean Environment and Energy Gold Coast Campus, Griffith UniversityQueensland 4222 Australia

§Ruoyu Fan, Yange Zhang, and Zhi Hu contributed equally to this work.

Abstract

To data, using strong metal-support interaction (SMSI) effect to improve the catalytic performance of metal catalysts is an important strategy for heterogeneous catalysis, and this effect is basically achieved by using reducible metal oxides. However, the formation of SMSI between metal and inert-support has been so little coverage and remains challenge. In this work, the SMSI effect can be effectively extended to the inert support-metal catalysis system to fabricate a Cu0/Cu-doped SiO2 catalyst with high dispersion and loading (38.5 wt.%) through the interfacial effect of inert silica. In the catalyst, subnanometric composite of Cu cluster and atomic copper (in the configuration of Cu–O–Si) can be consciously formed on the silica interface, and verified by extended X-ray absorption fine structure (EXAFS), in situ X-ray photoelectron spectroscopy (XPS), and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) characterization. The promoting activity in transfer-hydrogenation by the SMSI effect of Cu-silica interface and the synergistic active roles of cluster and atomic Cu have also been revealed from surface interface structure, catalytic activity, and density functional theory (DFT) theoretical calculation at an atomic level. The subnanometric composite of cluster and atomic copper species can be derived from a facile synthesis strategy of metal-inert support SMSI effect and the realistic active site of Cu-based catalyst can also been identified accurately, thus it will help to expand the application of subnanometric materials in industrial catalysis.

Keywords: copper, strong metal-support interaction (SMSI), inert-support, synergistic, interfacial effect, transfer-hydrogenation

References(60)

1

Mateen, M.; Shah, K.; Chen, Z.; Chen, C.; Li, Y. D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Res. 2019, 12, 1631–1634.

2

Yang, H. H.; Chen, Y. Y.; Cui, X. J.; Wang, G. F.; Cen, Y. L.; Deng, T. S.; Yan, W. J.; Gao, J.; Zhu, S. H.; Olsbye, U. et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem. , Int. Ed. 2018, 57, 1836–1840.

3

Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks II, J. E.; Dai, S. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem. , Int. Ed. 2015, 54, 13263–13267.

4

Wang, W. W.; Du, P. P.; Zou, S. H.; He, H. Y.; Wang, R. X.; Jin, Z.; Shi, S.; Huang, Y. Y.; Si, R.; Song, Q. S. et al. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal. 2015, 5, 2088–2099.

5

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

6

Chen, K.; Fang, H. H.; Wu, S.; Liu, X.; Zheng, J. W.; Zhou, S.; Duan, X. P.; Zhuang, Y. C.; Tsang, S. C. E.; Yuan, Y. Z. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces. Appl. Catal. B: Environ. 2019, 251, 119–129.

7

Qing, S. J.; Hou, X. N.; Liu, Y. J.; Li, L. D.; Wang, X.; Gao, Z. X.; Fan, W. B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming. Chem. Commun. 2018, 54, 12242–12245.

8

Xi, H. J.; Hou, X. N.; Liu, Y. J.; Qing, S. J.; Gao, Z. X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming. Angew. Chem. , Int. Ed. 2014, 53, 11886–11889.

9

Ai, Y. J.; Hu, Z. N.; Liu, L.; Zhou, J. J.; Long, Y.; Li, J. F.; Ding, M. Y.; Sun, H. B.; Liang, Q. L. Magnetically hollow Pt nanocages with ultrathin walls as a highly integrated nanoreactor for catalytic transfer hydrogenation reaction. Adv. Sci. 2019, 6, 1802132.

10

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082– 3087.

11

Zhang, T.; Zhang, D.; Han, X. H., Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

12

Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem. , Int. Ed. 2018, 57, 11262–11266.

13

Ge, H. B.; Zhang, B.; Liang, H. J.; Zhang, M. W.; Fang, K. G.; Chen, Y.; Qin. Y. Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal. B: Environ. 2020, 263, 118133.

14

Wang, H. J.; Li, X. D.; Lan, X. C.; Wang, T. F. Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal–organic frameworks: A highly active catalyst for furfuryl alcohol hydrogenation. ACS Catal. 2018, 8, 2121–2128.

15

Yao, S. Y.; Lin, L. L.; Liao, W. J.; Rui, N.; Li, N.; Liu, Z. Y.; Cen, J. J.; Zhang, F.; Li, X.; Song, L. et al. Exploring metal-support interactions to immobilize subnanometer Co clusters on γ-Mo2N: A highly selective and stable catalyst for CO2 activation. ACS Catal. 2019, 9, 9087–9097.

16

Sun, J. J.; Cheng, J. Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nat. Commun. 2019, 10, 5400.

17

Liu, L. C.; Lopez-Haro, M.; Lopes, C. W.; Li, C. G.; Concepcion, P.; Simonelli, L.; Calvino, J. J.; Corma, A. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 2019, 18, 866–873.

18

Zhang, L. C.; Jia, C. C.; He, S. R.; Zhu, Y. T.; Wang, Y. N.; Zhao, Z. H.; Gao, X. C.; Zhang, X. M.; Sang, Y. H.; Zhang, D. J. et al. Hot hole enhanced synergistic catalytic oxidation on Pt-Cu alloy clusters. Adv. Sci. 2017, 4, 1600448.

19

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

20

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

21

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113– 7119.

22

Huang, P. C.; Liu, W.; He, Z. H.; Xiao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.

23

Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. G.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.

24

Li, X.; Wang, X. X.; Liu, M. C.; Liu, H. Y.; Chen, Q.; Yin, Y. D.; Jin, M. S. Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Res. 2018, 11, 780–790.

25

Wu, K.; Wang, X. Y.; Guo L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y. W.; Sun, L. D. et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044–2055.

26

Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564.

27

Wong, A.; Liu, Q.; Griffin, S. Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427–1430.

28

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

29

Wu, L. B.; Li, B. L.; Zhao, C. Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites. ChemCatChem 2018, 10, 1140–1147.

30

Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

31

Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

32

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

33

Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

34

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

35

Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper-ceria interfacial perimeter. Nat. Catal. 2019, 2, 334– 341.

36

Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

37

Lopez, N.; Illas, F.; Pacchioni, G. Adsorption of Cu, Pd, and Cs atoms on regular and defect sites of the SiO2 surface. J. Am. Chem. Soc. 1999, 121, 813–821.

38

Arnal, P. M.; Weidenthaler, C.; Schüth, F. Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties. Chem. Mater. 2006, 18, 2733–2739.

39

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

40

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

41

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

42

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

43

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

44

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758– 1775.

45

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

46

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

47

Levien. L.; Prewitt. C. T.; Weidner, D. J. Structure and elastic properties of quartz at pressure. Am. Mineral. 1980, 65, 920–930.

48

Rignanese, G. M.; De Vita, A.; Charlier, J. C.; Gonze, X.; Car, R. First-principles molecular-dynamics study of the (0001) α-quartz surface. Phys. Rev. B. 2000, 61, 13250–13255.

49

Deng, Y. C.; Gao, R.; Lin, L. L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc. 2018, 140, 14481–14489.

50

Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.

51

Bindwal, A. B.; Vaidya, P. D. Reaction kinetics of vanillin hydro­genation in aqueous solutions using a Ru/C catalyst. Energy Fuels 2014, 28, 3357–3362.

52

Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

53

Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 2002, 106, 6921–6929.

54

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

55

Gurevich, S. A.; Zaraiskaya, T. A.; Konnikov, S. G.; Mikushkin, V. M.; Nikonov, S. Y.; Sitnikova, A. A.; Sysoev, S. E.; Khorenko, V. V.; Shnitov, V. V.; Gordeev, Y. S. Investigation of the chemical state of copper in Cu/SiO2 composite films by x-ray photoelectron spectros­copy. Phys. Solid State 1997, 39, 1691–1695.

56

Chang, X. X.; Wang, T.; Zhao, Z. J.; Yang, P. P.; Greeley, J.; Mu, R. T.; Zhang, G.; Gong, Z. M.; Luo, Z. B.; Chen, J.; Cui, Y.; Ozin, G. A.; Gong, J. L. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem. , Int. Ed. 2018, 57, 15415–15419.

57

Nie, R. F.; Peng, X. L.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catal. Sci. Technol. 2017, 7, 627–634.

58

Singuru, R.; Dhanalaxmi, K.; Shit, S. C.; Reddy, B. M.; Mondal, J. Palladium nanoparticles Encaged in a nitrogen-rich porous organic polymer: Constructing a promising robust nanoarchitecture for catalytic biofuel upgrading. ChemCatChem 2017, 9, 2550–2564.

59

Tang, X.; Chen, H. W.; Hu, L.; Hao, W. W.; Sun, Y.; Zeng, X. H.; Lin, L.; Liu, S. J. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Appl. Catal. B: Environ. 2014, 147, 827–834.

60

Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D. E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J. Catal. 2011, 277, 1–13.

File
12274_2021_3384_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 January 2021
Revised: 03 February 2021
Accepted: 04 February 2021
Published: 09 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52072371, 51871209, and 51502297), key technologies research and development program of Anhui province (No. 006153430011), and instrument developing project of the Chinese Academy of Sciences (No. yz201421).

Return