Journal Home > Volume 14 , Issue 12

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including "NAND" and "NOR" are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory- processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems

Show Author's information Zhi-Cheng Zhang1Yi Li2Jing-Jing Wang1De-Han Qi2Bin-Wei Yao1Mei-Xi Yu1Xu-Dong Chen1( )Tong-Bu Lu1
Ministry of Education International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Material Science and Engineering Tianjin University of TechnologyTianjin 300384 China
Key Laboratory of Computer Vision and Systems (Ministry of Education) School of Computer Science and EngineeringTianjin University of TechnologyTianjin 300384 China

Abstract

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including "NAND" and "NOR" are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory- processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

Keywords: neuromorphic computing, graphdiyne, optoelectronic synapses, sensing-memory-processing, optical logic functions

References(71)

1

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

2

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

3

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

4

Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

5

Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.

6

Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

7

Li, J. F.; Wan, C. J.; Wang, C.; Zhang, H.; Chen, X. D. 2D material chemistry: Graphdiyne-based biochemical sensing. Chem. Res. Chin. Univ. 2020, 36, 622–630.

8

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. , Int. Ed. 2018, 57, 9382–9386.

9

Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

10

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

11

Huang, C. H.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489.

12

Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

13

He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y. et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 2017, 8, 1172.

14

Jiang, T.; Chen, K.; Wang, J. J.; Hu, Z. L.; Wang, G. L.; Chen, X. D.; Sun, P. F.; Zhang, Q. B.; Yan, C. L.; Zhang, L. Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. J. Mater. Chem. A 2019, 7, 27535–27546.

15

Yang, C.; Wang, H. F.; Xu, Q. Recent advances in two-dimensional materials for electrochemical energy storage and conversion. Chem. Res. Chin. Univ. 2020, 36, 10–23.

16

Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Optimized geometries and electronic structures of graphyne and its family. Phys. Rev. B 1998, 58, 11009–11014.

17

Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

18

Jin, Z. W.; Chen, Y. H.; Zhou, Q.; Mao, P.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne for multilevel flexible organic resistive random access memory devices. Mater. Chem. Front. 2017, 1, 1338–1341.

19

Zhang, Y.; Huang, P.; Guo, J.; Shi, R. C.; Huang, W. C.; Shi, Z.; Wu, L. M.; Zhang, F.; Gao, L. F.; Li, C. et al. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv. Mater. 2020, 32, 2001082.

20

Li, W. H.; Liu, J.; Yu, Y. X.; Feng, G. Y.; Song, Y. R.; Liang, Q.; Liu, L.; Lei, S. B.; Hu, W. P. Synthesis of large-area ultrathin graphdiyne films at an air–water interface and their application in memristors. Mater. Chem. Front. 2020, 4, 1268–1273.

21

Li, Y.; Zhang, M. J.; Hu, X. L.; Fan, X. H.; Yu, L. M.; Huang, C. S. Light and heat triggering modulation of the electronic performance of a graphdiyne-based thin film transistor. J. Phys. Chem. Lett. 2020, 11, 1998–2005.

22

Zhang, M. J.; Li, Y.; Li, X. D.; Wang, N. Y.; Huang, C. S. Graphdiyne ink for ionic liquid gated printed transistor. Adv. Electron. Mater. 2020, 6, 2000157.

23

Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

24

Wang, X. H.; Zhang, Z. C.; Wang, J. J.; Chen, X. D.; Yao, B. W.; Hou, Y. X.; Yu, M. X.; Li, Y.; Lu, T. B. Synthesis of wafer-scale monolayer pyrenyl graphdiyne on ultrathin hexagonal boron nitride for multibit optoelectronic memory. ACS Appl. Mater. Interfaces 2020, 12, 33069–33075.

25

Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 2020, 7, 1903480.

26

Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.

27

Seo, S.; Kang, B. S.; Lee, J. J.; Ryu, H. J.; Kim, S.; Kim, H.; Oh, S.; Shim, J.; Heo, K.; Oh, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 2020, 11, 3936.

28

Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

29

Wei, H. H.; Yu, H. Y.; Gong, J. D.; Ma, M. X.; Han, H.; Ni, Y.; Zhang, S.; Xu, W. T. Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility. Adv. Funct. Mater. 2021, 30, 2007232.

30

Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Recent progress in three-terminal artificial synapses: From device to system. Small 2019, 15, 1900695.

31

Gong, J. D.; Yu, H. Y.; Zhou, X.; Wei, H. H.; Ma, M. X.; Han, H.; Zhang, S.; Ni, Y.; Li, Y. L.; Xu, W. T. Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv. Funct. Mater. 2020, 2005413.

32

Han, X.; Xu, Z. S.; Wu, W. Q.; Liu, X. H.; Yan, P. G.; Pan, C. F. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020, 1, 2000029.

33

Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

34

Duan, N.; Li, Y.; Chiang, H. C.; Chen, J.; Pan, W. Q.; Zhou, Y. X.; Chien, Y. C.; He, Y. H.; Xue, K. H.; Liu, G. et al. An electro-photo- sensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 2019, 11, 17590–17599.

35

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

36

Qin, S. C.; Wang, F. Q.; Liu, Y. J.; Wan, Q.; Wang, X. R.; Xu, Y. B.; Shi, Y.; Wang, X. M.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 035022.

37

Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806.

38

Hou, X.; Liu, C. S.; Ding, Y.; Liu, L.; Wang, S. Y.; Zhou, P. A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 2020, 7, 2002072.

39

Ahmed, T.; Kuriakose, S.; Mayes, E. L. H.; Ramanathan, R.; Bansal, V.; Bhaskaran, M.; Sriram, S.; Walia, S. Optically stimulated artificial synapse based on layered black phosphorus. Small 2019, 15, 1900966.

40

Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B. et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2021, 15, 1497–1508.

41

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

42

Sun, F. Q.; Lu, Q. F.; Liu, L.; Li, L. H.; Wang, Y. Y.; Hao, M. M.; Cao, Z. G.; Wang, Z. H.; Wang, S. Q.; Li, T. et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Adv. Mater. Technol. 2020, 5, 1900888.

43

Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

44

Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.

45

Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

46

Zhou, J. Y.; Xie, Z. Q.; Liu, R.; Gao, X.; Li, J. Q.; Xiong, Y.; Tong, L. M.; Zhang, J.; Liu, Z. F. Synthesis of ultrathin graphdiyne film using a surface template. ACS Appl. Mater. Interfaces 2019, 11, 2632–2637.

47

Zhang, S. Q.; Wang, J. Y.; Li, Z. Z.; Zhao, R. Q.; Tong, L. M.; Liu, Z. F.; Zhang, J.; Liu, Z. R. Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 2016, 120, 10605–10613.

48

Leong, W. S.; Wang, H. Z.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.

49

Li, J. Q.; Xiong, Y.; Xie, Z. Q.; Gao, X.; Zhou, J. Y.; Yin, C.; Tong, L. M.; Chen, C. G.; Liu, Z. F.; Zhang, J. Template synthesis of an ultrathin β-graphdiyne-like film using the eglinton coupling reaction. ACS Appl. Mater. Interfaces 2019, 11, 2734–2739.

50

Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; v. Klitzing, K.; Smet, J. H. Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 2010, 10, 1149–1153.

51

Wang, X. M.; Xie, W. G.; Du, J.; Wang, C. L.; Zhao, N.; Xu, J. B. Graphene/metal contacts: Bistable states and novel memory devices. Adv. Mater. 2012, 24, 2614–2619.

52

Tian, H.; Mi, W. T.; Wang, X. F.; Zhao, H. M.; Xie, Q. Y.; Li, C.; Li, Y. X.; Yang, Y.; Ren, T. L. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 2015, 15, 8013–8019.

53

Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

54

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

55

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

56

Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.

57

Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

58

Queisser, H. J.; Theodorou, D. E. Decay kinetics of persistent photo­conductivity in semiconductors. Phys. Rev. B 1986, 33, 4027– 4033.

59

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

60

Yin, L.; Han, C.; Zhang, Q. T.; Ni, Z. Y.; Zhao, S. Y.; Wang, K.; Li, D. S.; Xu, M. S.; Wu, H. Q.; Pi, X. D. et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019, 63, 103859.

61

Ahmed, T.; Kuriakose, S.; Abbas, S.; Spencer, M. J. S.; Rahman, M. A.; Tahir, M.; Lu, Y. R.; Sonar, P.; Bansal, V.; Bhaskaran, M. et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 2019, 29, 1901991.

62

Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

63

Elkins, R. L.; Richards, T. L.; Nielsen, R.; Repass, R.; Stahlbrandt, H.; Hoffman, H. G. The neurobiological mechanism of chemical aversion (emetic) therapy for alcohol use disorder: An fmri study. Front. Behav. Neurosci. 2017, 11, 182.

64

Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

65

Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

66

Yu, J. J.; Liang, L. Y.; Hu, L. X.; Duan, H. X.; Wu, W. H.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Chang, T. C.; Cao, H. T. Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy 2019, 62, 772–780.

67

Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

68

Toni, N.; Buchs, P. A.; Nikonenko, I.; Bron, C. R.; Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999, 402, 421–425.

69

Kim, K.; Chen, C. L.; Truong, Q.; Shen, A. M.; Chen, Y. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 2013, 25, 1693–1698.

70

Cho, S. W.; Kwon, S. M.; Lee, M.; Jo, J. W.; Heo, J. S.; Kim, Y. H.; Cho, H. K.; Park, S. K. Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 2019, 66, 104097.

71

Karbalaei Akbari, M.; Hu, J.; Verpoort, F.; Lu, H. L.; Zhuiykov, S.Nanoscale all-oxide-heterostructured bio-inspired optoresponsivenociceptor. Nano-Micro Lett. 2020, 12, 83.

File
12274_2021_3381_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2021
Revised: 31 January 2021
Accepted: 01 February 2021
Published: 02 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21790052 and 51802220) and Natural Science Foundation of Tianjin City (No. 19JCYBJC17300).

Return