Journal Home > Volume 14 , Issue 12

Developing low-energy input route for conversion of methane (CH4) to value-added methanol (CH3OH) at room temperature is important in environment and industry. Bonding in electron donor-acceptor hybrid can potentially promote charge transfer and photocatalytic efficiency of CH4 conversion. Herein, bonding in electron donor rhodamine B (RhB)–acceptor (TiO2) hybrid (RhB/TiO2) significantly promotes the selectivity of photocatalytic oxidation of CH4 to CH3OH and utilization of visible light (low-energy photons) at ambient condition. Even under green light irradiation (λ = 550 nm), the noble-metal-free RhB/TiO2 hybrid synthesized presents enhanced oxidation of CH4 to CH3OH with a generation rate of 143 ·mol·g-1·h-1 and selectivity of 94%. This work demonstrates the possibility and feasibility of noble-metal-free catalysts for activating CH4 under visible light at room temperature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm)

Show Author's information Xingyang Wu1,2,§Yi Zeng2,§Hangchen Liu2,§Jiaqing Zhao3Tierui Zhang3( )Song Ling Wang1,2,4( )
China-UK Low Carbon CollegeShanghai Jiao Tong UniversityShanghai200240China
School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijing100190China
Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092China

§ Xingyang Wu, Yi Zeng, and Hangchen Liu contributed equally to this work.

Abstract

Developing low-energy input route for conversion of methane (CH4) to value-added methanol (CH3OH) at room temperature is important in environment and industry. Bonding in electron donor-acceptor hybrid can potentially promote charge transfer and photocatalytic efficiency of CH4 conversion. Herein, bonding in electron donor rhodamine B (RhB)–acceptor (TiO2) hybrid (RhB/TiO2) significantly promotes the selectivity of photocatalytic oxidation of CH4 to CH3OH and utilization of visible light (low-energy photons) at ambient condition. Even under green light irradiation (λ = 550 nm), the noble-metal-free RhB/TiO2 hybrid synthesized presents enhanced oxidation of CH4 to CH3OH with a generation rate of 143 ·mol·g-1·h-1 and selectivity of 94%. This work demonstrates the possibility and feasibility of noble-metal-free catalysts for activating CH4 under visible light at room temperature.

Keywords: photocatalysis, solar energy, methanol, dye sensitization, methane oxidation

References(66)

1

Cui, X. J. ; Li, H. B. ; Wang, Y. ; Hu, Y. L. ; Hua, L. ; Li, H. Y. ; Han, X. W. ; Liu, Q. F. ; Yang, F. ; He, L. M. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902-1910.

2

Meng, X. G. ; Cui, X. J. ; Rajan, N. P. ; Yu, L. ; Deng, D. H. ; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296-2325.

3

McFarland, E. Unconventional chemistry for unconventional natural gas. Science 2012, 338, 340-342.

4

Kanai, M. Photocatalytic upgrading of natural gas. Science 2018, 361, 647-648.

5

Kirschke, S. ; Bousquet, P. ; Ciais, P. ; Saunois, M. ; Canadell, J. G. ; Dlugokencky, E. J. ; Bergamaschi, P. ; Bergmann, D. ; Blake, D. R. ; Bruhwiler, L. et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813-823.

6

Lashof, D. A. ; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529-531.

7

Solomon, S. ; Qin, D. ; Manning, M. ; Chen, Z. ; Marquis, M. ; Averyt, K. B. ; Tignor, M. ; Miller, H. L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press: Cambridge, 2007; pp 95-123.

8

Huang, K. F. ; Miller, J. B. ; Huber, G. W. ; Dumesic, J. A. ; Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2018, 2, 349-365.

9

Liao, Y. ; Xu, H. M. ; Liu, W. ; Ni, H. F. ; Zhang, X. G. ; Zhai, A. P. ; Quan, Z. W. ; Qu, Z. ; Yan, N. Q. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas. Environ. Sci. Technol. 2019, 53, 4511-4518.

10

Toyoda, S. ; Suzuki, Y. ; Hattori, S. ; Yamada, K. ; Fujii, A. ; Yoshida, N. ; Kouno, R. ; Murayama, K. ; Shiomi, H. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environ. Sci. Technol. 2011, 45, 917-922.

11

Chen, X. X. ; Li, Y. P. ; Pan, X. Y. ; Cortie, D. ; Huang, X. T. ; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

12

Choudhary, T. V. ; Choudhary, V. R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions. Angew. Chem. , Int. Ed. 2008, 47, 1828-1847.

13

Tang, P. ; Zhu, Q. J. ; Wu, Z. X. ; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580-2591.

14

Zakaria, Z. ; Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sust. Energ. Rev. 2016, 65, 250-261.

15

Kwon, Y. ; Kim, T. Y. ; Kwon, G. ; Yi, J. ; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694-17699.

16

Huang, W. X. ; Zhang, S. R. ; Tang, Y. ; Li, Y. T. ; Nguyen, L. ; Li, Y. Y. ; Shan, J. J. ; Xiao, D. Q. ; Gagne, R. ; Frenkel, A. I. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. , Int. Ed. 2016, 55, 13441-13445.

17

Zhou, Y. Y. ; Zhang, L. ; Wang, W. Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.

18

Hammond, C. ; Forde, M. M. ; Ab Rahim, M. H. ; Thetford, A. ; He, Q. ; Jenkins, R. L. ; Dimitratos, N. ; Lopez-Sanchez, J. A. ; Dummer, N. F. ; Murphy, D. M. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. , Int. Ed. 2012, 51, 5129-5133.

19

Li, D. ; Rohani, V. ; Fabry, F. ; Parakkulam Ramaswamy, A. ; Sennour, M. ; Fulcheri, L. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis. Appl. Catal. B: Environ. 2020, 261, 118228.

20

Nisbet, E. G. ; Dlugokencky, E. J. ; Bousquet, P. Methane on the rise—again. Science 2014, 343, 493-495.

21

Jackson, R. B. ; Solomon, E. I. ; Canadell, J. G. ; Cargnello, M. ; Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2019, 2, 436-438.

22

Meng, L. S. ; Chen, Z. Y. ; Ma, Z. Y. ; He, S. ; Hou, Y. D. ; Li, H. H. ; Yuan, R. S. ; Huang, X. H. ; Wang, X. X. ; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294-298.

23

Li, L. ; Li, G. D. ; Yan, C. ; Mu, X. Y. ; Pan, X. L. ; Zou, X. X. ; Wang, K. X. ; Chen, J. S. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. , Int. Ed. 2011, 50, 8299-8303.

24

Amano, F. ; Shintani, A. ; Tsurui, K. ; Mukohara, H. ; Ohno, T. ; Takenaka, S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 2019, 4, 502-507.

25

Baek, J. ; Rungtaweevoranit, B. ; Pei, X. K. ; Park, M. ; Fakra, S. C. ; Liu, Y. S. ; Matheu, R. ; Alshmimri, S. A. ; Alshehri, S. ; Trickett, C. A. et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 2018, 140, 18208- 18216.

26

Zimmermann, T. ; Soorholtz, M. ; Bilke, M. ; Schüth, F. Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J. Am. Chem. Soc. 2016, 138, 12395-12400.

27

Dinh, K. T. ; Sullivan, M. M. ; Narsimhan, K. ; Serna, P. ; Meyer, R. J. ; Dincă, M. ; Román-Leshkov, Y. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper- exchanged zeolites. J. Am. Chem. Soc. 2019, 141, 11641-11650.

28

Yuliati, L. ; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592-1602.

29

Sushkevich, V. L. ; Palagin, D. ; Ranocchiari, M. ; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523-527.

30

Agarwal, N. ; Freakley, S. J. ; McVicker, R. U. ; Althahban, S. M. ; Dimitratos, N. ; He, Q. ; Morgan, D. J. ; Jenkins, R. L. ; Willock, D. J. ; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223-227.

31

Shan, J. J. ; Li, M. W. ; Allard, L. F. ; Lee, S. ; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605-608.

32

Ikuno, T. ; Zheng, J. ; Vjunov, A. ; Sanchez-Sanchez, M. ; Ortuño, M. A. ; Pahls, D. R. ; Fulton, J. L. ; Camaioni, D. M. ; Li, Z. Y. ; Ray, D. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10294-10301.

33

Park, M. B. ; Park, E. D. ; Ahn, W. S. Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Front. Chem. 2019, 7, 514.

34

Hu, A. H. ; Guo, J. J. ; Pan, H. ; Zuo, Z. W. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 2018, 361, 668-672.

35

Zhang, K. N. ; Chang, L. ; An, Q. ; Wang, X. ; Zuo, Z. W. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556-10564.

36

Wang, S. L. ; Zhu, Y. ; Luo, X. ; Huang, Y. ; Chai, J. W. ; Wong, T. I. ; Xu, G. Q. 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with vis-NIR light. Adv. Funct. Mater. 2018, 28, 1705357.

37

Wang, S. L. ; Luo, X. ; Zhou, X. ; Zhu, Y. ; Chi, X. ; Chen, W. ; Wu, K. ; Liu, Z. ; Quek, S. Y. ; Xu, G. Q. Fabrication and properties of a free- standing two-dimensional titania. J. Am. Chem. Soc. 2017, 139, 15414-15419.

38

Wang, S. L. ; Lin, S. H. ; Zhang, D. Q. ; Li, G. S. ; Leung, M. K. H. Controlling charge transfer in quantum-size titania for photocatalytic applications. Appl. Catal. B: Environ. 2017, 215, 85-92.

39

Wen, M. C. ; Li, G. Y. ; Liu, H. L. ; Chen, J. Y. ; An, T. C. ; Yamashita, H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci. : Nano 2019, 6, 1006-1025.

40

Kuwahara, Y. ; Fujie, Y. ; Mihogi, T. ; Yamashita, H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly(ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020, 10, 6356-6366.

41

Zhu, S. ; Chen, X. F. ; Li, Z. C. ; Ye, X. Y. ; Liu, Y. ; Chen, Y. ; Yang, L. ; Chen, M. ; Zhang, D. Q. ; Li, G. S. et al. Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 264, 118515.

42

Zhang, Y. X. ; Kuwahara, Y. ; Mori, K. ; Yamashita, H. Construction of hybrid MoS2 phase coupled with sic heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation. Langmuir 2020, 36, 1174-1182.

43

Xie, J. J. ; Jin, R. X. ; Li, A. ; Bi, Y. P. ; Ruan, Q. S. ; Deng, Y. C. ; Zhang, Y. J. ; Yao, S. Y. ; Sankar, G. ; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide- supported iron species. Nat. Catal. 2018, 1, 889-896.

44

Karimi Estahbanati, M. R. ; Feilizadeh, M. ; Babin, A. ; Mei, B. ; Mul, G. ; Iliuta, M. C. Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chem. Eng. J. 2020, 382, 122732.

45

Zhang, J. L. ; Zhai, C. Y. ; Zhao, W. ; Chen, Y. X. ; Yin, R. L. ; Zeng, L. X. ; Zhu, M. S. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide. Chem. Eng. J. 2020, 397, 125310.

46

Zhang, S. ; Yi, J. J. ; Chen, J. R. ; Yin, Z. L. ; Tang, T. ; Wei, W. X. ; Cao, S. S. ; Xu, H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583.

47

Yu, X. ; De Waele, V. ; Löfberg, A. ; Ordomsky, V. ; Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 2019, 10, 700.

48

Yu, X. ; Zholobenko, V. L. ; Moldovan, S. ; Hu, D. ; Wu, D. ; Ordomsky, V. V. ; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511-519.

49

Farrell, B. L. ; Igenegbai, V. O. ; Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 2016, 6, 4340-4346.

50

Zhou, W. C. ; Qiu, X. Y. ; Jiang, Y. H. ; Fan, Y. Y. ; Wei, S. L. ; Han, D. X. ; Niu, L. ; Tang, Z. Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A 2020, 8, 13277-13284.

51

Li, Z. H. ; Pan, X. Y. ; Yi, Z. G. Photocatalytic oxidation of methane over cuo-decorated ZnO nanocatalysts. J. Mater. Chem. A 2019, 7, 469-475.

52

Palkovits, R. ; Antonietti, M. ; Kuhn, P. ; Thomas, A. ; Schüth, F. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew. Chem. , Int. Ed. 2009, 48, 6909-6912.

53

Pan, L. ; Zou, J. J. ; Zhang, X. W. ; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000-10002.

54

Miller, K. L. ; Lee, C. W. ; Falconer, J. L. ; Medlin, J. W. Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. J. Catal. 2010, 275, 294-299.

55

Zhao, D. ; Chen, C. C. ; Wang, Y. F. ; Ma, W. H. ; Zhao, J. C. ; Rajh, T. ; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(⒒)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308-314.

56

Weng, Y. X. ; Li, L. ; Liu, Y. ; Wang, L. ; Yang, G. Z. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. J. Phys. Chem. B 2003, 107, 4356-4363.

57

Boettcher, S. W. ; Bartl, M. H. ; Hu, J. G. ; Stucky, G. D. Structural analysis of hybrid titania-based mesostructured composites. J. Am. Chem. Soc. 2005, 127, 9721-9730.

58

Hu, Y. ; Anpo, M. ; Wei, C. H. Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. J. Photochem. Photobiol. A 2013, 264, 48-55.

59

Murcia-López, S. ; Villa, K. ; Andreu, T. ; Morante, J. R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO4 photocatalyst. Chem. Commun. 2015, 51, 7249-7252.

60

Villa, K. ; Murcia-López, S. ; Morante, J. R. ; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B: Environ. 2016, 187, 30-36.

61

Hameed, A. ; Ismail, I. M. I. ; Aslam, M. ; Gondal, M. A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A: Gen. 2014, 470, 327-335.

62

Li, Y. ; Li, J. ; Zhang, G. K. ; Wang, K. ; Wu, X. Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. ACS Sustain. Chem. Eng. 2019, 7, 4382-4389.

63

Murcia-López, S. ; Villa, K. ; Andreu, T. ; Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 2014, 4, 3013-3019.

64

Murcia-López, S. ; Bacariza, M. C. ; Villa, K. ; Lopes, J. M. ; Henriques, C. ; Morante, J. R. ; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 2017, 7, 2878-2885.

65

Zhu, W. L. ; Shen, M. K. ; Fan, G. Z. ; Yang, A. ; Meyer, J. R. ; Ou, Y. N. ; Yin, B. ; Fortner, J. ; Foston, M. ; Li, Z. S. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 2018, 1, 6683-6691.

66

Villa, K. ; Murcia-López, S. ; Andreu, T. ; Morante, J. R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B: Environ. 2015, 163, 150-155.

File
12274_2021_3380_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 January 2021
Revised: 30 January 2021
Accepted: 01 February 2021
Published: 31 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was sponsored by Shanghai Pujiang Program (No. 19PJ1405200) and the Startup Fund for Youngman Research at SJTU (SFYR at SJTU, No. WF220516003). We acknowledge Prof. Xin Luo of Sun Yat-Sen University for help to draw molecule structures.

Return