Journal Home > Volume 15 , Issue 6

A novel dense diffusion barrier material (YxSr1−xTi0.9In0.1O3−δ (x = 0.03, 0.05, 0.07)) was prepared by using a sol-gel method. The crystal structure, microstructures, electrical conductivity and ionic conductivity of barrier material were characterized. The results show that the samples exhibit the formation of cubic perovskite structure phase. The increase of Y-doping amount on A-site improved electrical conductivity and sinterability of materials. A limiting current oxygen sensor based on Y0.07Sr0.97Ti0.9In0.1O3–δ as a dense diffusion barrier shows excellent sensing performance. The linear relationship between limiting current logIL and 1000/T can described logIL = 4.603,8 − 3.847,5·1,000/T. At 750 °C, 0.25% ≤ x(O2) ≤ 5.0%, the linear relationship between limiting current (IL) and oxygen amount (x(O2)) can described as IL = 7.047,6 + 3.875,1·x(O2).


menu
Abstract
Full text
Outline
About this article

Limiting current oxygen sensor based on Y, In co-doped SrTiO3 as a dense diffusion barrier layer

Show Author's information Ke Shan( )Zhongzhou YiJing Wang( )
College of Science, Honghe University, Mengzi 661199, China

Abstract

A novel dense diffusion barrier material (YxSr1−xTi0.9In0.1O3−δ (x = 0.03, 0.05, 0.07)) was prepared by using a sol-gel method. The crystal structure, microstructures, electrical conductivity and ionic conductivity of barrier material were characterized. The results show that the samples exhibit the formation of cubic perovskite structure phase. The increase of Y-doping amount on A-site improved electrical conductivity and sinterability of materials. A limiting current oxygen sensor based on Y0.07Sr0.97Ti0.9In0.1O3–δ as a dense diffusion barrier shows excellent sensing performance. The linear relationship between limiting current logIL and 1000/T can described logIL = 4.603,8 − 3.847,5·1,000/T. At 750 °C, 0.25% ≤ x(O2) ≤ 5.0%, the linear relationship between limiting current (IL) and oxygen amount (x(O2)) can described as IL = 7.047,6 + 3.875,1·x(O2).

Keywords: strontium titanate, limiting current oxygen sensor, dense diffusion barrier, mixed conductivity

References(42)

1

Fergus, J. W. Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators B 2007, 123, 1169–1179.

2

Tao, L.; Huang, J. C.; Dastan, D.; Wang, T. Y.; Li, J.; Yin, X. T.; Wang, Q. New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite. Appl. Surf. Sci. 2021, 540, 148320.

3

Tao, L.; Huang, J. C.; Dastan, D.; Wang, T. Y.; Li, J.; Yin, X. T.; Wang, Q. CO2 capture and separation on charge-modulated calcite. Appl. Surf. Sci. 2020, 530, 147265.

4

Yin, X. T.; Li, J.; Dastan, D.; Zhou, W. D.; Garmestani, H.; Alamgir, F. M. Ultra-high selectivity of H2 over CO with a p-n nanojunction based gas sensors and its mechanism. Sens. Actuators B 2020, 319, 128330.

5

Yin, X. T.; Zhou, W. D.; Li, J.; Lv, P.; Wang, Q.; Wang, D.; Wu, F. Y., Dastan, D.; Garmestani, H.; Shi, Z. C. et al. Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. 2019, 30, 14687–14694.

6

Yin, X. T.; Zhou, W. D.; Li, J.; Wang, Q.; Wu, F. Y.; Dastan, D.; Wang, D.; Garmestani, H.; Wang, X. M.; Talu, Ş. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 2019, 805, 229–236.

7

Korotcenkov, G. Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens. Actuators B. 2007, 121, 664–678.

8

Tan, G. L.; Tang, D.; Dastan, D.; Jafari, A.; Silva, J. P. B.; Yin, X. T. Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process. 2021, 122, 105506.

9

Yin, X. T.; Lv, P.; Li, J.; Jafari, A.; Wu, F. Y.; Wang, Q.; Dastan, D.; Shi, Z. C.; Yu, S. T. et al. Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications. J. Alloys Compd. 2020, 825, 154105.

10

Yin, X. T.; Dastan, D.; Wu, F. Y.; Li, J. Facile synthesis of SnO2/LaFeO3−XNX composite: Photocatalytic activity and gas sensing performance. Nanomaterials 2019, 9, 1163.

11

Dastan, D. Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Appl. Phys. A 2017, 123, 699.

12

Jafari, A.; Tahani, K.; Dastan, D.; Asgary, S.; Shi, Z. C.; Yin, X. T.; Zhou, W. D.; Garmestani, H.; Ţălu, Ş. Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces 2020, 18, 100463.

13

Dastan, D. Nanostructured anatase Titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2015, 2, 109–114.

14

Nie, S.; Dastan, D.; Li, J.; Zhou, W. D.; Wu, S. S.; Zhou, Y. W.; Yin, X. T. Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids 2021, 150, 109864.

15

Zhou, W. D.; Dastan, D.; Yin, X. T.; Nie, S.; Wu, S. S.; Wang, Q.; Li, J. Optimization of gas sensing properties of n-SnO2/p-xCuO sensors for homogenous gases and the sensing mechanism. J. Mater. Sci.: Mater. Electron. 2020, 31, 18412–18426.

16

Zhou, W. D.; Dastan, D.; Li, J.; Yin, X. T.; Wang, Q. Discriminable Sensing response behavior to homogeneous gases based on n-ZnO/p-NiO Composites. Nanomaterials 2020, 10, 785.

17

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

18

Li, H. Y.; Yang, H.; Guo, X. Oxygen sensors based on SrTi0.65Fe0.35O3−δ thick film with MgO diffusion barrier for automotive emission control. Sens. Actuators B 2015, 213, 102–110.

19

Shan, K.; Yi, Z. Z. Yin, X. T.; Dastan, D.; Garmestani, H. Conductivity and mixed conductivity of a novel dense diffusion barrier and the sensing properties of limiting current oxygen sensors. Dalton Trans. 2020, 49, 6682–6692.

20

Brailsford, A. D.; Yussouff, M.; Logothetis, E. M.; Wang, T.; Soltis, R. E. Experimental and theoretical study of the response of ZrO2 oxygen sensors to simple one-reducing-gas mixtures. Sens. Actuators B 1997, 42, 15–26.

21

Boivin, J. C.; Mairesse, G. Recent material developments in fast oxide ion conductors. Chem. Mater. 1998, 10, 2870–2888.

22

Dastan, D.; Banpurkar, A. G. Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci.: Mater. Electron. 2017, 28, 3851–3859.

23

Shi, L.; Tin, K. C.; Wong, N. B. Thermal stability of zirconia membranes. J. Mater. Sci. 1999, 34, 3367–3374.

24

Ivers-Tiffee, E.; Härdtl, K. H.; Menesklou, W.; Riegel, J. Principles of solid state oxygen sensors for lean combustion gas control. Electrochim. Acta 2001, 47, 807–814.

25
Gerblinger, J.; Haerdtl, K. H.; Meixner, H.; Aigner, R. High-temperature microsensors. In Sensors: Micro- and Nanosensor Technology‐Trends in Sensor Markets; Meixner, H.; Jones, R., Eds.; VCH: New York, 1995; Vol. 8, p 181.
26

Rothschild, A.; Litzelman, S. J.; Tuller, H. L.; Menesklou, W.; Schneider, T.; Ivers-Tiffee, E. Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solution. Sens. Actuators B. 2005, 108, 223–230.

27

Moos, R.; Menesklou, W.; Schreiner, H. J.; Härdtl, K. H. Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens. Actuators B. 2000, 67, 178–183.

28

Moos, R.; Rettig, F.; Hürland, A.; Plog, C. Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology. Sens. Actuators B 2003, 93, 43–50.

29

Filatova, E. O.; Egorova, Y. V.; Galdina, K. A.; Scherb, T.; Schumacher, G.; Bouwmeester, H. J. M.; Baumann, S. Baumann, S. Effect of Fe content on atomic and electronicstructure of complex oxides Sr(Ti,Fe)O3−δ. Solid State Ionics 2017, 308, 27–33.

30

Song, J. L.; Guo, X. SrTi0.65Fe0.35O3 nanofibers for oxygen sensing. Solid State Ionics 2015, 278, 26–31.

31

Chow, C. L.; Ang, W. C.; Tse, M. S.; Tan, O. K. Oxygen-sensing property of sol-gel-derived SrTi1−xFexO3−δ thin films with different iron concentrations (x = 0.2–0.8). Thin Solid Films 2013, 542, 393–398.

32

Ding, T. Z.; Jia, W. G. Electrophoretic deposition of SrTi1−xMgxO3−δ films in oxygen sensor. Sens. Actuators B 2002, 82, 284–286.

33

Trabelsi, H.; Bejar, M.; Dhahri, E.; Valente, M. A.; Graça, M. P. F. Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3−δ ceramics. Phys. E 2019, 108, 317–325.

34

Fagg, D. P.; Kharton, V. V.; Frade, J. R.; Ferreira, A. A. L. Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3−δ perovskites. Solid State Ionics 2003, 156, 45–57.

35

Shan, K.; Zhai, F. R.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Tajabadi, F.; Jafari, A.; Abbasi, S. Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf. Interfaces 2021, 23, 100905.

36

Shan, K.; Yi, Z.; Yin, X. T.; Dastan, D.; Altaf, F.; Garmestani, H.; Alamgir, F. M. Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf. Interfaces 2020, 21, 100762.

37

Shan, K.; Yi, Z. Z.; Yin, X. T.; Cui, L. R.; Dastan, D.; Garmestani, H.; Alamgir, F. M. Diffusion kinetics mechanism of oxygen ion in dense diffusion barrier limiting current oxygen sensors. J. Alloys Compd. 2021, 855, 157465.

38

Shan, K.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Garmestani, H. Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for a limiting current oxygen sensor. Dalton Trans. 2020, 49, 8549–8556.

39

Shan, K.; Yi, Z. Z. Synthesis and ionic-electronic conductivity of A-site deficient (Y, In)co-doped SrTiO3 as novel materials for mixed conductor. Scr. Mater. 2015, 107, 119–122.

40

Liu, L.; Sheng, Y. Y.; Liu, M.; Dienwiebel, M.; Zhang, Z. C.; Dastan, D. Formation of the third bodies of steel sliding against brass under lubricated conditions. Tribol. Int. 2019, 140, 105727.

41

Shan, K.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Dadkhah, S.; Coates, B. T.; Garmestani, H. Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors. Adv. Powder Technol. 2020, 31, 4657–4664.

42

Garzon, F.; Raistrick, I.; Brosha, E.; Houlton, R.; Chung, B. W. Dense diffusion barrier limiting current oxygen sensors. Sens. Actuators B. 1998, 50, 125–130.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 December 2020
Revised: 22 January 2021
Accepted: 01 February 2021
Published: 03 March 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was kindly supported by the National Natural Science Foundation of China (Nos. 51962004 and 51562009).

Return