Journal Home > Volume 14 , Issue 12

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization

Show Author's information Bingbing Bai1,§Chaoyu Gu2,§Xiaohui Lu1,§Xingyu Ge3Junling Yang2Chenfei Wang1Yongchun Gu4Aidong Deng2Yuehua Guo2( )Xingmei Feng1( )Zhifeng Gu3( )
Department of StomatologyAffiliated Hospital of Nantong UniversityNantong226001China
Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantong226001China
Department of RheumatologyAffiliated Hospital of Nantong UniversityNantong226001China
Department of StomatologySuzhou Ninth People's HospitalSuzhou215200China

§ Bingbing Bai, Chaoyu Gu, and Xiaohui Lu contributed equally to this work.

Abstract

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.

Keywords: drug delivery, macrophage polarization, reactive oxygen species, periodontitis, inflammatory microenvironment

References(38)

1

Rajeshwari, H. R. ; Dhamecha, D. ; Jagwani, S. ; Rao, M. ; Jadhav, K. ; Shaikh, S. ; Puzhankara, L. ; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control. Release 2019, 307, 393-409.

2

Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30-44.

3

Cafferata, E. A. ; Alvarez, C. ; Diaz, K. T. ; Maureira, M. ; Monasterio, G. ; González, F. E. ; Covarrubias, C. ; Vernal, R. Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Dis. 2019, 25, 1866-1878.

4

Bui, F. Q. ; Almeida-da-Silva, C. L. C. ; Huynh, B. ; Trinh, A. ; Liu, J. ; Woodward, J. ; Asadi, H. ; Ojcius, D. M. Association between periodontal pathogens and systemic disease. Biomed. J. 2019, 42, 27-35.

5

Noble, J. M. ; Scarmeas, N. ; Papapanou, P. N. Poor oral health as a chronic, potentially modifiable dementia risk factor: Review of the literature. Curr. Neurol. Neurosci. Rep. 2013, 13, 384.

6

Yao, W. X. ; Xu, P. C. ; Zhao, J. J. ; Ling, L. ; Li, X. X. ; Zhang, B. ; Cheng, N. N. ; Pang, Z. Q. RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs. J. Colloid Interface Sci. 2015, 458, 14-21.

7

Yao, W. X. ; Xu, P. C. ; Pang, Z. Q. ; Zhao, J. J. ; Chai, Z. L. ; Li, X. X. ; Li, H. ; Jiang, M. L. ; Cheng, H. B. ; Zhang. B. et al. Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs. Int. J. Nanomedicine 2014, 9, 3963-3970.

8

Caffesse, R. G. ; Echeverria, J. J. Treatment trends in periodontics. Periodontology 2000 2019, 79, 7-14.

9

Brun, A. ; Moignot, N. ; Colombier, M. L. ; Dursun, E. Towards the nano-control of periodontal inflammation? Oral Dis. 2020, 26, 245-248.

10

Li, N. ; Jiang, L. T. ; Jin, H. ; Wu, Y. ; Liu, Y. J. ; Huang, W. ; Wei, L. ; Zhou, Q. ; Chen, F. ; Gao, Y. M. et al. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids Surf. B Biointerfaces 2019, 183, 110454.

11

Yu, T. ; Zhao, L. ; Huang, X. ; Ma, C. J. ; Wang, Y. X. ; Zhang, J. C. ; Xuan, D. Y. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection. J. Periodontol. 2016, 87, 1092-1102.

12

Fernandes, T. L. ; Gomoll, A. H. ; Lattermann, C. ; Hernandez, A. J. ; Bueno, D. F. ; Amano, M. T. Macrophage: A potential target on cartilage regeneration. Front. Immunol. 2020, 11, 111.

13

Kim, J. ; Kim, H. Y. ; Song, S. Y. ; Go, S. H. ; Sohn, H. S. ; Baik, S. ; Soh, M. ; Kim, K. ; Kim, D. ; Kim, H. C. et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 2019, 13, 3206-3217.

14

Ni, C. ; Zhou, J. ; Kong, N. ; Bian, T. Y. ; Zhang, Y. H. ; Huang, X. F. ; Xiao, Y. ; Yang, W. R. ; Yan, F. H. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials 2019, 206, 115-132.

15

Parisi, L. ; Gini, E. ; Baci, D. ; Tremolati, M. ; Fanuli, M. ; Bassani, B. ; Farronato, G. ; Bruno, A. ; Mortara L. Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res. 2018, 2018, 8917804.

16

Li, X. ; He, T. X. ; Kong, D. Q. ; Xu, X. Y. ; Wu, R. X. ; Sun, L. J. ; Tian, B. M. ; Chen, F. M. M2 macrophages enhance the cementoblastic differentiation of periodontal ligament stem cells via the Akt and JNK pathways. Stem Cells 2019, 37, 1567-1580.

17

Li, X. ; Qi, M. L. ; Li, C. Y. ; Dong, B. ; Wang, J. ; Weir, M. D. ; Imazato, S. ; Du, L. Y. ; Lynch, C. D. ; Xu, L. et al. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J. Mater. Chem. B 2019, 7, 6955-6971.

18

Cui, D. ; Lyu, J. ; Li, H. X. ; Lei, L. ; Bian, T. Y. ; Li, L. L. ; Yan, F. H. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol. Immunol. 2017, 91, 65-74.

19

Zhuang, Z. ; Yoshizawa-Smith, S. ; Glowacki, A. ; Maltos, K. ; Pacheco, C. ; Shehabeldin, M. ; Mulkeen, M. ; Myers, N. ; Chong, R. ; Verdelis, K. et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models. J. Dent. Res. 2019, 98, 200-208.

20

Lu, Y. ; Aimetti, A. A. ; Langer, R. ; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

21

Zhou, Q. ; Shao, S. Q. ; Wang, J. Q. ; Xu, C. H. ; Xiang, J. J. ; Piao, Y. ; Zhou, Z. X. ; Yu, Q. S. ; Tang, J. B. ; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799-809.

22

Ferreira, C. A. ; Ni, D. L. ; Rosenkrans, Z. T. ; Cai, W. B. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, 11, 4955-4984.

23

Nibali, L. ; Donos, N. Periodontitis and redox status: A review. Curr. Pharm. Des. 2013, 19, 2687-2697.

24

Tan, H. Y. ; Wang, N. ; Li, S. ; Hong, M. ; Wang, X. B. ; Feng, Y. B. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longev. 2016, 2016, 2795090.

25

Liu, C. C. ; Mo, L. Y. ; Niu, Y. L. ; Li, X. ; Zhou, X. D. ; Xu, X. The role of reactive oxygen species and autophagy in periodontitis and their potential linkage. Front. Physiol. 2017, 8, 439.

26

Waddington, R. J. ; Moseley, R. ; Embery, G. Periodontal disease mechanisms: Reactive oxygen species: A potential role in the pathogenesis of periodontal diseases. Oral Dis. 2000, 6, 138-151.

27

Baltacıoğlu, E. ; Yuva, P. ; Aydın, G. ; Alver, A. ; Kahraman, C. ; Karabulut, E. ; Akalın, F. A. Lipid peroxidation levels and total oxidant/antioxidant status in serum and saliva from patients with chronic and aggressive periodontitis. oxidative stress index: A new biomarker for periodontal disease? J. Periodontol. 2014, 85, 1432-1441.

28

Bao, X. F. ; Zhao, J. H. ; Sun, J. ; Hu, M. ; Yang, X. R. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882-8892.

29

Saita, M. ; Kaneko, J. ; Sato, T. ; Takahashi, S. S. ; Wada-Takahashi, S. ; Kawamata, R. ; Sakurai, T. ; Lee, M. C. I. ; Hamada, N. ; Kimoto, K. et al. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials 2016, 76, 292-301.

30

Yao, J. ; Cheng, Y. ; Zhou, M. ; Zhao, S. ; Lin, S. C. ; Wang, X. Y. ; Wu, J. J. X. ; Li, S. R. ; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927-2933.

31

Zhao, J. L. ; Gao, W. ; Cai, X. J. ; Xu, J. J. ; Zou, D. W. ; Li, Z. S. ; Hu, B. ; Zheng, Y. Y. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 2019, 9, 2843-2855.

32

Zhao, H. ; Zeng, Z. D. ; Liu, L. ; Chen, J. W. ; Zhou, H. T. ; Huang, L. L. ; Huang, J. ; Xu, H. ; Xu, Y. Y. ; Chen, Z. R. et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 2018, 10, 6981-6991.

33

Zhang, L. L. ; Wang, Y. L. ; Wang, C. ; He, M. ; Wan, J. S. ; Wei, Y. ; Zhang, J. L. ; Yang, X. L. ; Zhao, Y. B. ; Zhang, Y. F. Light-activable on-demand release of nano-antibiotic platforms for precise synergy of thermochemotherapy on periodontitis. ACS Appl. Mater. Interfaces 2020, 12, 3354-3362.

34

Martin, V. ; Ribeiro, I. A. C. ; Alves, M. M. ; Gonçalves, L. ; Almeida, A. J. ; Grenho, L. ; Fernandes, M. H. ; Santos, C. F. ; Gomes, P. S. ; Bettencourt, A. F. Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment. Int. J. Pharm. 2019, 572, 118821.

35

Liu, Z. N. ; Chen, X. ; Zhang, Z. P. ; Zhang, X. J. ; Saunders, L. ; Zhou, Y. S. ; Ma, P. X. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss. ACS Nano 2018, 12, 9785-9799.

36

Liu, D. ; Yang, P. S. Minocycline hydrochloride nanoliposomes inhibit the production of TNF-α in LPS-stimulated macrophages. Int. J. Nanomed. 2012, 7, 4769-4775.

37

Kamegawa, R. ; Naito, M. ; Miyata, K. Functionalization of silica nanoparticles for nucleic acid delivery. Nano Res. 2018, 11, 5219-5239.

38

Yu, M. H. ; Niu, Y. T. ; Zhang, J. ; Zhang, H. W. ; Yang, Y. N. ; Taran, E. ; Jambhrunkar, S. ; Gu, W. Y. ; Thorn, P. ; Yu, C. Z. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 2016, 9, 291-305.

File
12274_2021_3376_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2020
Revised: 26 January 2021
Accepted: 30 January 2021
Published: 09 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21804072 and 82071838), the Natural Science Foundation of Jiangsu Province (No. BK20180941), China Postdoctoral Science Foundation (No. 2018M642297), Science and technology Project of Nantong City (No. MS12019022), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Nos. KYCX19-2080 and KYCX19-2078), and Jiangsu Students' Program for Innovation and Entrepreneurship Training (No. 201910304031Z).

Return