Journal Home > Volume 14 , Issue 12

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.

File
12274_2021_3376_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2020
Revised: 26 January 2021
Accepted: 30 January 2021
Published: 09 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21804072 and 82071838), the Natural Science Foundation of Jiangsu Province (No. BK20180941), China Postdoctoral Science Foundation (No. 2018M642297), Science and technology Project of Nantong City (No. MS12019022), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Nos. KYCX19-2080 and KYCX19-2078), and Jiangsu Students' Program for Innovation and Entrepreneurship Training (No. 201910304031Z).

Return