Journal Home > Volume 14 , Issue 12

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm-2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spontaneous migration induced Co nanokarstcave encapsulated in N-doped carbon hybrids for efficient oxygen electrocatalyst

Show Author's information Xuemin Wang1,2Ming Liu1,2Hang Zhang1,2Sihao Yan1,2Cui Zhang1,2( )Shuangxi Liu1,2,3,4( )
School of Materials Science and Engineering, Institute of New Catalytic Materials ScienceNankai UniversityTianjin300350China
National Institute for Advanced MaterialsNankai UniversityTianjin300350China
Key Laboratory of Advanced Energy Materials ChemistryMinistry of Education, Nankai UniversityTianjin300071China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China

Abstract

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm-2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

Keywords: size effect, oxygen electrocatalyst, spontaneous migration, Co nanokarstcave, multicomponent synergy

References(43)

1

Zhang, Z. Y. ; Tan, Y. Y. ; Zeng, T. ; Yu, L. Y. ; Chen, R. Z. ; Cheng, N. C. ; Mu, S. C. ; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. , in press, DOI: 10.1007/s12274-020-3234-6.

2

Liu, T. Y. ; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299-3309.

3

Ouyang, T. ; Wang, X. T. ; Mai, X. Q. ; Chen, A. N. ; Tang, Z. Y. ; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. , Int. Ed. 2020, 59, 11948-11957.

4

Liu, M. ; Kong, L. J. ; Wang, X. M. ; He, J. ; Bu, X. H. Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 2019, 15, 1903410.

5

Wang, X. M. ; Zhang, H. ; Yang, Z. ; Zhang, C. ; Liu, S. X. Ultrasound-treated metal-organic framework with efficient electrocatalytic oxygen evolution activity. Ultrason. Sonochem. 2019, 59, 104714.

6

Liu, Z. Q. ; Cheng, H. ; Li, N. ; Ma, T. Y. ; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777-3784.

7

Cai, H. Z. ; Chen, B. B. ; Zhang, X. ; Deng, Y. C. ; Xiao, D. Q. ; Ma, D. ; Shi, C. Highly active sites of low spin FeN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122-130.

8

Han, X. P. ; Wu, X. Y. ; Zhong, C. ; Deng, Y. D. ; Zhao, N. Q. ; Hu, W. B. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017, 31, 541-550.

9

Sabhapathy, P. ; Liao, C. C. ; Chen, W. F. ; Chou, T. C. ; Shown, I. ; Sabbah, A. ; Lin, Y. G. ; Lee, J. F. ; Tsai, M. K. ; Chen, K. H. et al. Highly efficient nitrogen and carbon coordinated N-Co-C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 7179-7185.

10

Zhang, X. ; Wu, Z. S. ; Zhang, X. ; Li, L. W. ; Li, Y. W. ; Xu, H. M. ; Li, X. X. ; Yu, X. L. ; Zhang, Z. S. ; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/ carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

11

Liu, Y. L. ; Chen, F. J. ; Ye, W. ; Zeng, M. ; Han, N. ; Zhao, F. P. ; Wang, X. X. ; Li, Y. G. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal-air batteries. Adv. Funct. Mater. 2017, 27, 1606034.

12

Jayakumar, A. ; Antony, R. P. ; Wang, R. H. ; Lee, J. M. MOF-derived hollow cage NixCo3-xO4 and their synergy with graphene for outstanding supercapacitors. Small 2017, 13, 1603102.

13

Liang, Q. R. ; Jin, H. H. ; Wang, Z. ; Xiong, Y. L. ; Yuan, S. ; Zeng, X. C. ; He, D. P. ; Mu, S. C. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 2019, 57, 746-752.

14

Yang, Q. X. ; Lu, R. ; Ren, S. S. ; Chen, C. T. ; Chen, Z. J. ; Yang, X. Y. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202-211.

15

Huang, Z. D. ; Feng, C. ; Sun, J. P. ; Xu, B. ; Huang, T. X. ; Wang, X. K. ; Dai, F. N. ; Sun, D. F. Ultrathin metal-organic framework nanosheets-derived yolk-shell Ni0.85Se@NC with rich Se-vacancies for enhanced water electrolysis. CCS Chem. , 2020, 2, 2696-2711.

16

Xu, H. J. ; Yang, Y. W. ; Yang, X. X. ; Cao, J. ; Liu, W. S. ; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 8284-8291.

17

Ji, D. X. ; Fan, L. ; Tao, L. ; Sun, Y. J. ; Li, M. G. ; Yang, G. R. ; Tran, T. Q. ; Ramakrishna, S. ; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable Zinc-air batteries. Angew. Chem. , Int. Ed. 2019, 58, 13840-13844.

18

Mei, X. F. ; Meng, X. Q. ; Wu, F. M. Hydrothermal method for the production of reduced graphene oxide. Phys. E 2015, 68, 81-86.

19

Hummers, W. S. Jr. ; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

20

Cravillon, J. ; Nayuk, R. ; Springer, S. ; Feldhoff, A. ; Huber, K. ; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130-2141.

21

Zhou, J. W. ; Yu, X. S. ; Fan, X. X. ; Wang, X. J. ; Li, H. W. ; Zhang, Y. Y. ; Li, W. ; Zheng, J. ; Wang, B. ; Li, X. G. The impact of the particle size of a metal-organic framework for sulfur storage in Li-S batteries. J. Mater. Chem. A 2015, 3, 8272-8275.

22

Zhang, W. ; Jiang, X. F. ; Wang, X. B. ; Kaneti, Y. V. ; Chen, Y. X. ; Liu, J. ; Jiang, J. S. ; Yamauchi, Y. ; Hu, M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. , Int. Ed. 2017, 56, 8435-8440.

23

Zhao, Z. P. ; Hossain, D. ; Xu, C. C. ; Lu, Z. J. ; Liu, Y. S. ; Hsieh, S. H. ; Lee, I. ; Gao, W. P. ; Yang, J. ; Merinov, B. V. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 2020, 3, 1774-1790.

24

Wang, M. ; Duan, X. D. ; Xu, Y. X. ; Duan, X. F. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231-7247.

25

Xia, W. ; Qu, C. ; Liang, Z. B. ; Zhao, B. T. ; Dai, S. G. ; Qiu, B. ; Jiao, Y. ; Zhang, Q. B. ; Huang, X. Y. ; Guo, W. H. et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017, 17, 2788-2795.

26

Zhao, J. Y. ; Wang, R. ; Wang, S. ; Lv, Y. R. ; Xu, H. ; Zang, S. Q. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 2019, 7, 7389-7395.

27

Liu, Y. Y. ; Jiang, H. L. ; Zhu, Y. H. ; Yang, X. L. ; Li, C. Z. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 2016, 4, 1694-1701.

28

Wang, H. F. ; Tang, C. ; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

29

Yang, C. C. ; Zai, S. F. ; Zhou, Y. T. ; Du, L. ; Jiang, Q. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 2019, 29, 1901949.

30

Pan, Y. ; Sun, K. A. ; Liu, S. J. ; Cao, X. ; Wu, K. L. ; Cheong, W. C. ; Chen, Z. ; Wang, Y. ; Li, Y. ; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.

31

Zhang, W. ; Wu, Z. Y. ; Jiang, H. L. ; Yu, S. H. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385-14388.

32

Pu, Z. H. ; Wang, M. ; Kou, Z. K. ; Amiinu, I. S. ; Mu, S. C. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem. Commun. 2016, 52, 12753-12756.

33

Lin, C. ; Li, X. P. ; Shinde, S. S. ; Kim, D. H. ; Song, X. K. ; Zhang, H. J. ; Lee, J. H. Long-life rechargeable Zn air battery based on binary metal carbide armored by nitrogen-doped carbon. ACS Appl. Energy Mater. 2019, 2, 1747-1755.

34

Liu, M. ; Lu, X. Q. ; Guo, C. ; Wang, Z. J. ; Li, Y. P. ; Lin, Y. ; Zhou, Y. ; Wang, S. T. ; Zhang, J. Architecting a mesoporous N-doped graphitic carbon framework encapsulating CoTe2 as an efficient oxygen evolution electrocatalyst. ACS Appl. Mater. Inter. 2017, 9, 36146-36153.

35

Ouyang, T. ; Ye, Y. Q. ; Wu, C. Y. ; Xiao, K. ; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. , Int. Ed. 2019, 58, 4923-4928.

36

Zhao, S. L. ; Wang, Y. ; Dong, J. C. ; He, C. T. ; Yin, H. J. ; An, P. F. ; Zhao, K. ; Zhang, X. F. ; Gao, C. ; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

37

Guo, D. H. ; Shibuya, R. ; Akiba, C. ; Saji, S. ; Kondo, T. ; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.

38

Wang, J. ; Xu, F. ; Jin, H. Y. ; Chen, Y. Q. ; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

39

Hou, Y. ; Wen, Z. H. ; Cui, S. M. ; Ci, S. Q. ; Mao, S. ; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872-882.

40

Wang, X. T. ; Ouyang, T. ; Wang, L. ; Zhong, J. H. ; Ma, T. Y. ; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zinc-air batteries. Angew. Chem. , Int. Ed. 2019, 131, 13425-13430.

41

Wang, R. ; Dong, X. Y. ; Du, J. ; Zhao, J. Y. ; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

42

Wang, Q. C. ; Ji, Y. J. ; Lei, Y. P. ; Wang, Y. B. ; Wang, Y. D. ; Li, Y. Y. ; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 2018, 3, 1183-1191.

43

Cheng, H. ; Li, M. L. ; Su, C. Y. ; Li, N. ; Liu, Z. Q. Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1701833.

File
12274_2021_3375_MOESM1_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 December 2020
Revised: 24 January 2021
Accepted: 31 January 2021
Published: 12 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This project was financially supported by the Ministry of Education of the people's Republic of China (No. IRT13R30). Anhui Kemi Machinery Technology Co., Ltd. was acknowledged for the support of the autoclaves required for the synthesis of rGO.

Return