Journal Home > Volume 14 , Issue 12

Cyclic-conjugated linkages between planar-macrocyclic molecules contribute to the robustness of the two-dimensional (2D) polymerization and extension of π-interactions. The fabrication of such linkages in 2D polymers remains challenging. Combining scanning tunneling microscope (STM) measurements and density functional theory (DFT) calculations, we demonstrate a linear polymerization of metal-free naphthalocyanine (NPc) molecules with [4]-radialene-like linkages on silver surfaces. Experimentally, by depositing NPc molecules on the Ag(110) surface and subsequent annealing up to 750 K, one-dimensional polymers are constructed along the [11(_)0] direction. High-resolution STM images show a stem-leaf-like feature. STM simulations based on a linear polymer of NPc molecules linked by four-membered carbon rings, [4]-radialene-like structure, agree well with the experimental observations. DFT calculations reveal that the polymerization process includes detaching two-terminal H atoms of NPc molecules along [11(_)0] direction, then bonding with a neighboring dehydrogenated NPc molecule by forming a four-membered ring. The dehydrogenation process can be promoted by on-surface impurities such as additional H atoms. Similar polymerizations have been achieved on Ag(111) surfaces in an amorphous way. Moreover, the energy gap of the NPc molecule decreases after linear polymerization, suggesting a red-shift for its optical absorption/scattering spectrum. Our study offers a new route to polymerize conjugated molecules with extended planar π-interactions.


menu
Abstract
Full text
Outline
About this article

Construction of poly-naphthalocyanine linked by [4]-radialene-like structures on silver surfaces

Show Author's information Rongting Wu1,§,De-Liang Bao1,§Linghao Yan1Junhai Ren1Yanfang Zhang1Qi Zheng1Ye-Liang Wang1Qing Huan1( )Shixuan Du1,2,3( )Hong-Jun Gao1,2
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing100190China
CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of SciencesBeijing100190China
Songshan Lake Materials LaboratoryDongguan523808China

§ Rongting Wu and De-Liang Bao contributed equally to this work.

Abstract

Cyclic-conjugated linkages between planar-macrocyclic molecules contribute to the robustness of the two-dimensional (2D) polymerization and extension of π-interactions. The fabrication of such linkages in 2D polymers remains challenging. Combining scanning tunneling microscope (STM) measurements and density functional theory (DFT) calculations, we demonstrate a linear polymerization of metal-free naphthalocyanine (NPc) molecules with [4]-radialene-like linkages on silver surfaces. Experimentally, by depositing NPc molecules on the Ag(110) surface and subsequent annealing up to 750 K, one-dimensional polymers are constructed along the [11(_)0] direction. High-resolution STM images show a stem-leaf-like feature. STM simulations based on a linear polymer of NPc molecules linked by four-membered carbon rings, [4]-radialene-like structure, agree well with the experimental observations. DFT calculations reveal that the polymerization process includes detaching two-terminal H atoms of NPc molecules along [11(_)0] direction, then bonding with a neighboring dehydrogenated NPc molecule by forming a four-membered ring. The dehydrogenation process can be promoted by on-surface impurities such as additional H atoms. Similar polymerizations have been achieved on Ag(111) surfaces in an amorphous way. Moreover, the energy gap of the NPc molecule decreases after linear polymerization, suggesting a red-shift for its optical absorption/scattering spectrum. Our study offers a new route to polymerize conjugated molecules with extended planar π-interactions.

Keywords: density functional theory calculation, polymerization, scanning tunneling microscope, naphthalocyanine, π-interaction extension

References(58)

1

Colson, J. W. ; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453-465.

2

Payamyar, P. ; King, B. T. ; Öttinger, H. C. ; Schlüter, A. D. Two-dimensional polymers: Concepts and perspectives. Chem. Commun. 2016, 52, 18-34.

3

Grill, L. ; Hecht, S. Covalent on-surface polymerization. Nat. Chem. 2020, 12, 115-130.

4

Schlüter, A. D. Mastering polymer chemistry in two dimensions. Commun. Chem. 2020, 3, 12.

5

Cai, J. M. ; Ruffieux, P. ; Jaafar, R. ; Bieri, M. ; Braun, T. ; Blankenburg, S. ; Muoth, M. ; Seitsonen, A. P. ; Saleh, M. ; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.

6

Ruffieux, P. ; Wang, S. Y. ; Yang, B. ; Sánchez-Sánchez, C. ; Liu, J. ; Dienel, T. ; Talirz, L. ; Shinde, P. ; Pignedoli, C. A. ; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489-492.

7

Grill, L. ; Dyer, M. ; Lafferentz, L. ; Persson, M. ; Peters, M. V. ; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687-691.

8

Sánchez-Sánchez, C. ; Dienel, T. ; Deniz, O. ; Ruffieux, P. ; Berger, R. ; Feng, X. L. ; Müllen, K. ; Fasel, R. Purely armchair or partially chiral: Noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano 2016, 10, 8006-8011.

9

Zhong, D. Y. ; Franke, J. H. ; Podiyanachari, S. K. ; Blömker, T. ; Zhang, H. M. ; Kehr, G. ; Erker, G. ; Fuchs, H. ; Chi, L. F. Linear alkane polymerization on a gold surface. Science 2011, 334, 213-216.

10

Gobbi, M. ; Orgiu, E. ; Samorí, P. When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic Van der Waals heterostructures. Adv. Mater. 2018, 30, 1706103.

11

Jariwala, D. ; Marks, T. J. ; Hersam, M. C. Mixed-dimensional Van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.

12

He, D. W. ; Zhang, Y. H. ; Wu, Q. S. ; Xu, R. ; Nan, H. Y. ; Liu, J. F. ; Yao, J. J. ; Wang, Z. L. ; Yuan, S. J. ; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

13

Yun, H. J. ; Choi, H. H. ; Kwon, S. K. ; Kim, Y. H. ; Cho, K. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones. ACS Appl. Mater. Interfaces 2015, 7, 5898-5906.

14

Liu, W. ; Luo, X. ; Bao, Y. ; Liu, Y. P. ; Ning, G. H. ; Abdelwahab, I. ; Li, L. J. ; Nai, C. T. ; Hu, Z. G. ; Zhao, D. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 2017, 9, 563-570.

15

Vasseur, G. ; Abadia, M. ; Miccio, L. A. ; Brede, J. ; Garcia-Lekue, A. ; de Oteyza, D. G. ; Rogero, C. ; Lobo-Checa, J. ; Ortega, J. E. Π band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 2016, 138, 5685-5692.

16

Bi, S. ; Yang, C. ; Zhang, W. B. ; Xu, J. S. ; Liu, L. M. ; Wu, D. Q. ; Wang, X. C. ; Han, Y. ; Liang, Q. F. ; Zhang, F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 2019, 10, 2467.

17

Wang, W. H. ; Shi, X. Q. ; Wang, S. Y. ; Van Hove, M. A. ; Lin, N. Single-molecule resolution of an organometallic intermediate in a surface-supported ullmann coupling reaction. J. Am. Chem. Soc. 2011, 133, 13264-13267.

18

Ren, J. H. ; Bao, D. L. ; Dong, L. ; Gao, L. ; Wu, R. T. ; Yan, L. H. ; Wang, A. W. ; Yan, J. H. ; Wang, Y. L. ; Huan, Q. et al. Lattice-directed construction of metal-organic molecular wires of pentacene on the Au(110) surface. J. Phys. Chem. C 2017, 121, 21650-21657.

19

Spitler, E. L. ; Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672-677.

20

Wan, S. ; Guo, J. ; Kim, J. ; Ihee, H. ; Jiang, D. L. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. , Int. Ed. 2009, 48, 5439-5442.

21

Yang, S. J. ; Chu, M. ; Miao, Q. Connecting two phenazines with a four-membered ring: The synthesis, properties and applications of cyclobuta[1, 2-b: 3, 4-b']diphenazines. J. Mater. Chem. C 2018, 6, 3651-3657.

22

Sanchez-Sanchez, C. ; Nicolaï, A. ; Rossel, F. ; Cai, J. M. ; Liu, J. Z. ; Feng, X. L. ; Müllen, K. ; Ruffieux, P. ; Fasel, R. ; Meunier, V. On-surface cyclization of ortho-dihalotetracenes to four- and six-membered rings. J. Am. Chem. Soc. 2017, 139, 17617-17623.

23

Cui, P. ; Zhang, Q. ; Zhu, H. B. ; Li, X. X. ; Wang, W. Y. ; Li, Q. X. ; Zeng, C. G. ; Zhang, Z. Y. Carbon tetragons as definitive spin switches in narrow zigzag graphene nanoribbons. Phys. Rev. Lett. 2016, 116, 026802.

24

Zhong, Y. ; Cheng, B. R. ; Park, C. ; Ray, A. ; Brown, S. ; Mujid, F. ; Lee, J. U. ; Zhou, H. ; Suh, J. ; Lee, K. H. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366, 1379-1384.

25

Liljeroth, P. ; Repp, J. ; Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 2007, 317, 1203-1206.

26

Huan, Q. ; Jiang, Y. ; Zhang, Y. Y. ; Ham, U. ; Ho, W. Spatial imaging of individual vibronic states in the interior of single molecules. J. Chem. Phys. 2011, 135, 014705.

27

Yan, L. H. ; Wu, R. T. ; Bao, D. L. ; Ren, J. H. ; Zhang, Y. F. ; Zhang, H. G. ; Huang, L. ; Wang, Y. L. ; Du, S. X. ; Huan, Q. et al. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface. Chin. Phys. B 2015, 24, 076802.

28

Kobayashi, N. ; Nakajima, S. I. ; Ogata, H. ; Fukuda, T. Synthesis, spectroscopy, and electrochemistry of tetra-tert-butylated tetraazaporphyrins, phthalocyanines, naphthalocyanines, and anthracocyanines, together with molecular orbital calculations. Chem.Eur. J. 2004, 10, 6294-6312.

29

Lim, B. ; Margulis, G. Y. ; Yum, J. H. ; Unger, E. L. ; Hardin, B. E. ; Grätzel, M. ; McGehee, M. D. ; Sellinger, A. Silicon-naphthalo/ phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells. Org. Lett. 2013, 15, 784-787.

30

Pandey, R. ; Kerner, R. A. ; Menke, S. M. ; Holst, J. ; Josyula, K. V. B. ; Holmes, R. J. Tin naphthalocyanine complexes for infrared absorption in organic photovoltaic cells. Org. Electron. 2013, 14, 804-808.

31

Bao, D. L. ; Zhang, Y. Y. ; Du, S. X. ; Pantelides, S. T. ; Gao, H. J. Barrierless on-surface metal incorporation in phthalocyanine-based molecules. J. Phys. Chem. C 2018, 122, 6678-6683.

32

Sun, Q. ; Zhang, C. ; Cai, L. L. ; Xie, L. ; Tan, Q. G. ; Xu, W. On-surface formation of two-dimensional polymer via direct C-H activation of metal phthalocyanine. Chem. Commun. 2015, 51, 2836-2839.

33

Lafferentz, L. ; Eberhardt, V. ; Dri, C. ; Africh, C. ; Comelli, G. ; Esch, F. ; Hecht, S. ; Grill, L. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 2012, 4, 215-220.

34

Lin, T. ; Shang, X. S. ; Adisoejoso, J. ; Liu, P. N. ; Lin, N. Steering on-surface polymerization with metal-directed template. J. Am. Chem. Soc. 2013, 135, 3576-3582.

35

Kuang, G. W. ; Chen, S. Z. ; Wang, W. H. ; Lin, T. ; Chen, K. Q. ; Shang, X. S. ; Liu, P. N. ; Lin, N. Resonant charge transport in conjugated molecular wires beyond 10 nm range. J. Am. Chem. Soc. 2016, 138, 11140-11143.

36

Abel, M. ; Clair, S. ; Ourdjini, O. ; Mossoyan, M. ; Porte, L. Single layer of polymeric Fe-phthalocyanine: An organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 2011, 133, 1203-1205.

37

Zhou, J. ; Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 2011, 133, 15113-15119.

38

Wang, Y. ; Yuan, H. ; Li, Y. F. ; Chen, Z. F. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: A computational study. Nanoscale 2015, 7, 11633-11641.

39

Stipe, B. C. ; Rezaei, M. A. ; Ho, W. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Instrum. 1999, 70, 137-143.

40

Wu, R. T. ; Ren, J. H. ; Dong, L. ; Wang, Y. L. ; Huan, Q. ; Gao, H. J. Quasi-free-standing graphene nano-islands on ag(110), grown from solid carbon source. Appl. Phys. Lett. 2017, 110, 213107.

41

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.

42

Kresse, G. ; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

43

Kresse, G. ; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

44

Perdew, J. P. ; Burke, K. ; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

45

Perdew, J. P. ; Chevary, J. A. ; Vosko, S. H. ; Jackson, K. A. ; Pederson, M. R. ; Singh, D. J. ; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

46

Krukau, A. V. ; Vydrov, O. A. ; Izmaylov, A. F. ; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

47

Henkelman, G. ; Uberuaga, B. P. ; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.

48

Wu, X. ; Vargas, M. C. ; Nayak, S. ; Lotrich, V. ; Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748-8757.

49

Wu, R. T. ; Yan, L. H. ; Zhang, Y. F. ; Ren, J. H. ; Bao, D. L. ; Zhang, H. G. ; Wang, Y. L. ; Du, S. X. ; Huan, Q. ; Gao, H. J. Self-assembled patterns and young's modulus of single-layer naphthalocyanine molecules on Ag(111). J. Phys. Chem. C 2015, 119, 8208-8212.

50

Wu, R. T. ; Yan, L. H. ; Bao, D. L. ; Ren, J. H. ; Du, S. X. ; Wang, Y. L. ; Huan, Q. ; Gao, H. J. Self-assembly evolution of metal-free naphthalocyanine molecules on Ag(111) at the submonolayer coverage. J. Phys. Chem. C 2019, 123, 7202-7208.

51

Wu, R. T. ; Bao, D. L. ; Yan, L. H. ; Wang, Y. L. ; Ren, J. H. ; Zhang, Y. F. ; Huan, Q. ; Zhang, Y. Y. ; Du, S. X. ; Pantelides, S. T. ; Gao, H. J. Direct visualization of hydrogen-transfer intermediate states by scanning tunneling microscopy. J. Phys. Chem. Lett. 2020, 11, 1536-1541.

52

Pham, T. A. ; Song, F. ; Stöhr, M. Supramolecular self-assembly of metal-free naphthalocyanine on Au(111). Phys. Chem. Chem. Phys. 2014, 16, 8881-8885.

53

Du, S. X. ; Gao, H. J. ; Seidel, C. ; Tsetseris, L. ; Ji, W. ; Kopf, H. ; Chi, L. F. ; Fuchs, H. ; Pennycook, S. J. ; Pantelides, S. T. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys. Rev. Lett. 2006, 97, 156105.

54

Sun, X. P. ; Hyeon Ko, S. ; Zhang, C. ; Ribbe, A. E. ; Mao, C. D. Surface-mediated DNA self-assembly. J. Am. Chem. Soc. 2009, 131, 13248-13249.

55

Sun, Q. ; Zhang, C. ; Kong, H. H. ; Tan, Q. G. ; Xu, W. On-surface aryl-aryl coupling via selective C-H activation. Chem. Commun. 2014, 50, 11825-11828.

56

Refaely-Abramson, S. ; Sharifzadeh, S. ; Jain, M. ; Baer, R. ; Neaton, J. B. ; Kronik, L. Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 2013, 88, 081204.

57

El-Khouly, M. E. ; El-Mohsnawy, E. ; Fukuzumi, S. Solar energy conversion: From natural to artificial photosynthesis. J. Photochem. Photobiol. C 2017, 31, 36-83.

58

Polman, A. ; Knight, M. ; Garnett, E. C. ; Ehrler, B. ; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 December 2020
Revised: 21 January 2021
Accepted: 31 January 2021
Published: 03 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

We thank Prof. Werner Hofer and Prof. Sokrates T. Pantelides for helpful discussions and suggestions. This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0202300), the National Natural Science Foundation of China (Nos. 61888102 and 61725107), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (No. 112111KYSB20160061), and China Postdoctoral Science Foundation (No. 2018M641511). DFT computations were carried out at the National Supercomputing Center of Tianjin.

Return