Journal Home > Volume 14 , Issue 11

Single-atom catalysts (SACs) especially supported on two-dimensional nitrogen-doped carbon substrate have been widely reported to be able to effectively promote electrocatalytic N2 reduction reaction (eNRR). The precise design of single-metal-atom active site (SMAS) calls for fundamental understanding of its working mechanism for enhanced eNRR performance. Herein, by means of density functional theory calculations, we theoretically investigate the eNRR performance of nine prototypical SMAS, namely, MN2B2 (M: transition metals of IVB, VB and VIB groups) which comprises of asymmetric ligands of N2B2 embedded in defective BN nanosheet. Our results reveal the significant role of spin state of SMAS in tuning the potential-determining steps of eNRR, in which MN2B2 site with higher spin magnetic moment (μ) is beneficial to reducing limiting potentials (UL) of eNRR. Specially, CrN2B2 (μ = 4μB), VN2B2 (μ = 3μB) and MoN2B2 (μ = 2μB) demonstrate high activity and selectivity to eNRR. The asymmetric ligands of N2B2 are deemed to be superior over mono-symmetric ligands. More importantly, our results demonstrate that breaking (or deviating) of the scaling relations between key N-containing intermediates (*N2H/*N2 and *NH2/*N2) on MN2B2 can be realized by enhancing spin state of SMAS which renders the active site a balanced N-affinity critical for efficient eNRR. This observation is validated by the calculated Sabatier volcano-shape relation between eNRR limiting potentials and N2 adsorption energy. Our study develops the guidance for catalyst design to boost eNRR performance by tuning the spin state of an active site.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatalytic nitrogen reduction

Show Author's information Cong FangWei An( )
College of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghai201620China

Abstract

Single-atom catalysts (SACs) especially supported on two-dimensional nitrogen-doped carbon substrate have been widely reported to be able to effectively promote electrocatalytic N2 reduction reaction (eNRR). The precise design of single-metal-atom active site (SMAS) calls for fundamental understanding of its working mechanism for enhanced eNRR performance. Herein, by means of density functional theory calculations, we theoretically investigate the eNRR performance of nine prototypical SMAS, namely, MN2B2 (M: transition metals of IVB, VB and VIB groups) which comprises of asymmetric ligands of N2B2 embedded in defective BN nanosheet. Our results reveal the significant role of spin state of SMAS in tuning the potential-determining steps of eNRR, in which MN2B2 site with higher spin magnetic moment (μ) is beneficial to reducing limiting potentials (UL) of eNRR. Specially, CrN2B2 (μ = 4μB), VN2B2 (μ = 3μB) and MoN2B2 (μ = 2μB) demonstrate high activity and selectivity to eNRR. The asymmetric ligands of N2B2 are deemed to be superior over mono-symmetric ligands. More importantly, our results demonstrate that breaking (or deviating) of the scaling relations between key N-containing intermediates (*N2H/*N2 and *NH2/*N2) on MN2B2 can be realized by enhancing spin state of SMAS which renders the active site a balanced N-affinity critical for efficient eNRR. This observation is validated by the calculated Sabatier volcano-shape relation between eNRR limiting potentials and N2 adsorption energy. Our study develops the guidance for catalyst design to boost eNRR performance by tuning the spin state of an active site.

Keywords: single-atom catalyst, electrocatalysis, density functional theory (DFT), N2 reduction, BN nanosheet, spin state

References(79)

1

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490-500.

2

Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat. Catal. 2019, 2, 377-380.

3

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

4

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437-5516.

5

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846-856.

6

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2-13.

7

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017, 7, 706-709.

8

Liu, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 1847-1854.

9

Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

10

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902-2908.

11

Yan, Z. H.; Ji, M. X.; Xia, J. X.; Zhu, H. Y. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: One step closer to a sustainable energy future. Adv. Energy Mater. 2020, 10, 1902020.

12

Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.

13

Kong, X.; Peng, H. Q.; Bu, S. Y.; Gao, Q. L.; Jiao, T. P.; Cheng, J. Y.; Liu, B.; Hong, G.; Lee, C. S.; Zhang, W. J. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J. Mater. Chem. A 2020, 8, 7457-7473.

14

Yan, D. F.; Li, H.; Chen, C.; Zou, Y. Q.; Wang, S. Y. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.

15

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235-1245.

16

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 13944-13960.

17

Su, J. W.; Ge, R. X.; Dong, Y.; Hao, F.; Chen, L. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A 2018, 6, 14025-14042.

18

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

19

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-12088.

20

Feng, Y. H.; An, W.; Wang, Z. M.; Wang, Y. Q.; Men, Y.; Du, Y. Y. Electrochemical CO2 reduction reaction on M@Cu(211) bimetallic single-atom surface alloys: Mechanism, kinetics, and catalyst screening. ACS Sustainable Chem. Eng. 2020, 8, 210-222.

21

Zhou, J. W.; An, W.; Wang, Z. M.; Jia, X. Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: Mechanism, kinetics and descriptor. Catal. Sci. Technol. 2019, 9, 4314-4326.

22

Jia, X.; An, W.; Wang, Z. M.; Zhou, J. W. Effect of doped metals on hydrodeoxygenation of phenol over Pt-based bimetallic alloys: Caryl-OH versus CaliphaticH-OH bond scission. J. Phys. Chem. C 2019, 123, 16873-16882.

23

Cui, X. D.; An, W.; Liu, X. Y.; Wang, H.; Men, Y.; Wang, J. G. C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: Mechanistic insight and catalyst screening. Nanoscale 2018, 10, 15262-15272.

24

Sui, L. J.; An, W.; Feng, Y. H.; Wang, Z. M.; Zhou, J. W.; Hur, S. H. Bimetallic Pd-based surface alloys promote electrochemical oxidation of formic acid: Mechanism, kinetics and descriptor. J. Power Sources 2020, 451, 227830.

25

Zhou, J. W.; An, W. Unravelling the role of oxophilic metal in promoting the deoxygenation of catechol on Ni-based alloy catalysts. Catal. Sci. Technol. 2020, 10, 6849-6859.

26

Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

27

Huang, Y. Y.; Babu, D. D.; Peng, Z.; Wang, Y. B. Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction. Adv. Sci. 2020, 7, 1902390.

28

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.

29

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

30

He, C.; Wu, Z. Y.; Zhao, L.; Ming, M.; Zhang, Y.; Yi, Y. P.; Hu, J. S. Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 2019, 9, 7311-7317.

31

Yang, H. D.; Liu, Y.; Luo, Y. T.; Lu, S. Q.; Su, B. T.; Ma, J. T. Achieving high activity and selectivity of nitrogen reduction via Fe-N3 coordination on iron single-atom electrocatalysts at ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 12809-12816.

32

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li., K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3·mg-1 cat. ·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

33

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204-214.

34

Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.

35

Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

36

Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246-1253.

37

Zang, W. J.; Yang, T.; Zou, H. Y.; Xi, S. B.; Zhang, H.; Liu, X. M.; Kou, Z. K.; Du, Y. H.; Feng, Y. P.; Shen, L. et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 2019, 9, 10166-10173.

38

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. , Int. Ed. 2019, 58, 2321-2325.

39

Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 2018, 1, 1800018.

40

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517-7525.

41

Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706-8709.

42

Liu, C. W.; Li, Q. Y.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: A DFT study. J. Mater. Chem. A 2019, 7, 4771-4776.

43

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664-9672.

44

Yin, H.; Li, S. L.; Gan, L. Y.; Wang, P. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A 2019, 7, 11908-11914.

45

Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181-1186.

46

Zhu, H. R.; Hu, Y. L.; Wei, S. H.; Hua, D. Y. Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: A first-principles study. J. Phys. Chem. C 2019, 123, 4274-4281.

47

Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419-3425.

48

Ma, Z. J.; Cui, Z. T.; Xiao, C. W.; Dai, W.; Lv, Y. H.; Li, Q. H.; Sa, R. J. Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer. Nanoscale 2020, 12, 1541-1550.

49

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480- 12487.

50

Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173-15180.

51

Niu, H.; Wang, X. T.; Shao, C.; Zhang, Z. F.; Guo, Y. Z. Computational screening single-atom catalysts supported on g-CN for N2 reduction: High activity and selectivity. ACS Sustainable Chem. Eng. 2020, 8, 13749-13758.

52

Zhang, K. L.; Feng, Y. L.; Wang, F.; Yang, Z. C.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992-12022.

53

Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919-924.

54

Kotakoski, J.; Jin, C. H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404.

55

Wang, X. Z.; Zhang, C. H.; Chang, Q.; Wang, L. C.; Lv, B. L.; Xu, J.; Xiang, H. W.; Yang, Y.; Li, Y. W. Enhanced Fischer-Tropsch synthesis performances of Fe/h-BN catalysts by Cu and Mn. Catal. Today 2020, 343, 91-100.

56

Sun, W. L.; Meng, Y.; Fu, Q. R.; Wang, F.; Wang, G. J.; Gao, W. H.; Huang, X. C.; Lu, F. S. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881-9888.

57

Fan, M. M.; Jimenez, J. D.; Shirodkar, S. N.; Wu, J. J.; Chen, S. M.; Song, L.; Royko, M. M.; Zhang, J. J.; Guo, H.; Cui, J. W. et al. Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal. 2019, 9, 10077-10086.

58

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

59

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558.

60

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

61

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

62

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

63

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

64

Kurakevych, O. O.; Solozhenko, V. L. Rhombohedral boron subnitride, B13N2, by X-ray powder diffraction. Acta Crystallogr. C 2007, 63, i80-i82.

65

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-Zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

66

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

67

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360.

68
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A pre- and post-processing program for VASP code. arXiv: 1908.08269, 2019.
69
https://webbook.nist.gov/chemistry/.
70

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180-2186.

71

Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. "White graphenes": Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049-5055.

72

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-409.

73

Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.

74

Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.

75

Huang, Q. L.; Liu, H. M.; An, W.; Wang, Y. Q.; Feng, Y. H.; Men, Y. Synergy of a metallic NiCo dimer anchored on C2N-graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustainable Chem. Eng. 2019, 7, 19113-19121.

76

Hedström, S.; dos Santos, E. C.; Liu, C.; Chan, K.; Abild-Pedersen, F.; Pettersson, L. G. M. Spin uncoupling in chemisorbed OCCO and CO2: Two high-energy intermediates in catalytic CO2 reduction. J. Phys. Chem. C 2018, 122, 12251-12258.

77

Li, Q. K.; Li, X. F.; Zhang, G. Z.; Jiang, J. Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. J. Am. Chem. Soc. 2018, 140, 15149-15152.

78

Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280-2288.

79

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild- Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the sabatier principle to a predictive theory of transition- metal heterogeneous catalysis. J. Catal. 2015, 328, 36-42.

File
12274_2021_3373_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2020
Revised: 28 January 2021
Accepted: 31 January 2021
Published: 04 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21673137), the Science and Technology Commission of Shanghai Municipality (No. 16ZR1413900). W. A. gratefully acknowledges the support from the Program for Top Talents in Songjiang District of Shanghai. The DFT calculations were performed using resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, and the Scientific Data and Computing Center, a com­ponent of the Computational Science Initiative, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Return