Journal Home > Volume 14 , Issue 11

Metal halide perovskite nanocrystals have attracted great attention of researchers due to their unique optoelectronic properties such as high photoluminescence quantum yield (PLQY), narrow full width at half-maximum (FWHM), long exciton diffusion length and high carrier mobility, which have been widely used in diverse fields including solar cells, photodetectors, light-emitting diodes, and lasers. Very recently, metal halide perovskites have emerged as a new class of materials in photocatalysis due to their promising photocatalytic performance. In this review, we summarize the recent advances on synthesis, modification and functionalization, with a specific focus on the photocatalytic application of metal halide perovskite nanocrystals. Finally, a brief outlook is proposed to point out the challenges in this emerging area. The goal of this view is to introduce the photocatalytic application of the metal halide perovskites and motivate researchers from different fields to explore more potentials in catalysis.


menu
Abstract
Full text
Outline
About this article

Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals

Show Author's information Yong Xu1( )Muhan Cao2Shaoming Huang1( )
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and Energy, Guangdong University of TechnologyGuangzhou510006China
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China

§ Yong Xu and Muhan Cao contributed equally to this work.

Abstract

Metal halide perovskite nanocrystals have attracted great attention of researchers due to their unique optoelectronic properties such as high photoluminescence quantum yield (PLQY), narrow full width at half-maximum (FWHM), long exciton diffusion length and high carrier mobility, which have been widely used in diverse fields including solar cells, photodetectors, light-emitting diodes, and lasers. Very recently, metal halide perovskites have emerged as a new class of materials in photocatalysis due to their promising photocatalytic performance. In this review, we summarize the recent advances on synthesis, modification and functionalization, with a specific focus on the photocatalytic application of metal halide perovskite nanocrystals. Finally, a brief outlook is proposed to point out the challenges in this emerging area. The goal of this view is to introduce the photocatalytic application of the metal halide perovskites and motivate researchers from different fields to explore more potentials in catalysis.

Keywords: synthesis, functionalization, modification, metal halide perovskite nanocrystals, photocatalytic application

References(189)

1

Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821.

2

Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099.

3

Chen, Q.; Zhou, H. P.; Song, T. B.; Luo, S.; Hong, Z. R.; Duan, H. S.; Dou, L. T.; Liu, Y. S.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14, 4158–4163.

4

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

5

Ahmad, R.; Nutan, G. V.; Singh, D.; Gupta, G.; Soni, U.; Sapra, S.; Srivastava, R. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 2021, 14, 1126–1134.

6

Zhu, H. L.; Liang, Z. F.; Huo, Z. B.; Ng, W. K.; Mao, J.; Wong, K. S.; Yin, W. J.; Choy, W. C. H. Low-bandgap methylammonium-rubidium cation Sn-rich perovskites for efficient ultraviolet-visible-near infrared photodetectors. Adv. Funct. Mater. 2018, 28, 1706068.

7

Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.

8

Dong, R.; Fang, Y. J.; Chae, J.; Dai, J.; Xiao, Z. G.; Dong, Q. F.; Yuan, Y. B.; Centrone, A.; Zeng, X. C.; Huang, J. S. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912–1918.

9

Zhou, J. C.; Huang, J. Photodetectors based on organic-inorganic hybrid lead halide perovskites. Adv. Sci. 2018, 5, 1700256.

10

Ji, L.; Hsu, H. Y.; Lee, J. C.; Bard, A. J.; Yu, E. T. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 2018, 18, 994–1000.

11

Ling, Y. C.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y. J.; Tan, L.; Hanson, K.; Ma, B. W. et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv. Mater. 2016, 28, 8983-8989.

12

Naresh, V.; Kim, B. H.; Lee, N. Synthesis of CsPbX3 (X = Cl/Br, Br, and Br/I)@SiO2/PMMA composite films as color-conversion materials for achieving tunable multi-color and white light emission. Nano Res. 2021, 14, 1187–1194.

13

Kumar, S.; Jagielski, J.; Kallikounis, N.; Kim, Y. H.; Wolf, C.; Jenny, F.; Tian, T.; Hofer, C. J.; Chiu, Y. C.; Stark, W. J. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. 2017, 17, 5277–5284.

14

Qiu, W. M.; Xiao, Z. G.; Roh, K. D.; Noel, N. K.; Shapiro, A.; Heremans, P.; Rand, B. P. Mixed lead-tin halide perovskites for efficient and wavelength-tunable near-infrared light-emitting diodes. Adv. Mater. 2019, 31, 1806105.

15

Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3: Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.

16

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3–x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

17

Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.

18

Ha, S. T.; Shen, C.; Zhang, J.; Xiong, Q. H. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photon. 2016, 10, 115–121.

19

Zhang, H. H.; Liao, Q.; Wu, Y. S.; Zhang, Z. Y.; Gao, Q. G.; Liu, P.; Li, M. L.; Yao, J. N.; Fu, H. B. 2D ruddlesden-popper perovskites microring laser array. Adv. Mater. 2018, 30, 1706186.

20

Saliba, M.; Wood, S. M.; Patel, J. B.; Nayak, P. K.; Huang, J.; Alexander-Webber, J. A.; Wenger, B.; Stranks, S. D.; Hörantner, M. T.; Wang, J. T. W. et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater. 2016, 28, 923–929.

21

Wang, Y.; Li, X. M.; Nalla, V.; Zeng, H. B.; Sun, H. D. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088.

22

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

23

Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio1, P.; Márquez, J. A.; Vilches, A. B. M.; Kasparavicius, E.; Smith, J. A. et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300–1309.

24

Egger, D. A.; Rappe, A. M.; Kronik, L. Hybrid organic-inorganic perovskites on the move. Acc. Chem. Res. 2016, 49, 573–581.

25

Berry, J.; Buonassisi, T.; Egger, D. A.; Hodes, G.; Kronik, L.; Loo, Y. L.; Lubomirsky, I.; Marder, S. R.; Mastai, Y.; Miller, J. S. et al. Hybrid organic-inorganic perovskites (HOIPs): Opportunities and challenges. Adv. Mater. 2015, 27, 5102–5112.

26

Shi, Z. J.; Guo, J.; Chen, Y. H.; Li, Q.; Pan, Y. F.; Zhang, H. J.; Xia, Y. D.; Huang, W. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Adv. Mater. 2017, 29, 1605005.

27

Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

28

Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099.

29

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

30

del Águila, A. G.; Do, T. T. H.; Xing, J.; Jee, W. J.; Khurgin, J. B.; Xiong, Q. H. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020, 13, 1962–1969.

31

Ye, S.; Zhao, M. J.; Song, J.; Qu, J. L. Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane. Nano Res. 2018, 11, 4654–4663.

32

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

33

Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

34

Dutta, A.; Behera, R. K.; Pal, P.; Baitalik, S.; Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew. Chem., Int. Ed. 2019, 58, 5552–5556.

35

Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed. 2017, 56, 13887–13892.

36

Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di Carlo, A.; Ducati, C. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 2016, 1, 15012.

37

Sun, Q. D.; Yin, W. J. Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 2017, 139, 14905–14908.

38

Zhang, Q.; Yin, Y. D. All-inorganic metal halide perovskite nanocrystals: Opportunities and challenges. ACS Cent. Sci. 2018, 4, 668–679.

39

Yang, D.; Cao, M. H.; Zhong, Q. X.; Li, P. L.; Zhang, X. H.; Zhang, Q. All-inorganic cesium lead halide perovskite nanocrystals: Synthesis, surface engineering and applications. J. Mater. Chem. C 2019, 7, 757–789.

40

Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

41

Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812–2824.

42

Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189.

43

Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.

44

Jung, H. S.; Park, N. G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.

45

Zhang, J. R.; Hodes, G.; Jin, Z. W.; Liu, S. Z. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem., Int. Ed. 2019, 58, 15596–15618.

46

Lu, M.; Zhang, Y.; Wang, S. X.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 2019, 29, 1902008.

47

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

48

Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 2018, 30, 1704587.

49

Leijtens, T.; Bush, K. A.; Prasanna, R.; McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 2018, 3, 828–838.

50

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

51

Dang, Y. Y.; Liu, Y.; Sun, Y. X.; Yuan, D. S.; Liu, X. L.; Lu, W. Q.; Liu, G. F.; Xia, H. B.; Tao, X. T. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 2015, 17, 665– 670.

52

Bi, C.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2014, 2, 18508–18514.

53

Pang, S. P.; Hu, H.; Zhang, J. L.; Lv, S. L.; Yu, Y. M.; Wei, F.; Qin, T. S.; Xu, H. X.; Liu, Z. H.; Cui, G. L. NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 2014, 26, 1485–1491.

54

Zhuo, S. F.; Zhang, J. F.; Shi, Y. M.; Huang, Y.; Zhang, B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem., Int. Ed. 2015, 54, 5693–5696.

55

Zhang, T. Y.; Yang, M. J.; Benson, E. E.; Li, Z. J.; van de Lagemaat, J.; Luther, J. M.; Yan, Y. F.; Zhu, K.; Zhao, Y. X. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)3. Chem. Commun. 2015, 51, 7820–7823.

56

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

57

Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

58

Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem. Lett. 2012, 41, 397–399.

59

Kollek, T.; Gruber, D.; Gehring, J.; Zimmermann, E.; Schmidt-Mende, L.; Polarz, S. Porous and shape-anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single-source precursor. Angew. Chem., Int. Ed. 2015, 54, 1341–1346.

60

Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J. P.; Lee, J. W.; Song, J. K. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 2015, 15, 5191–5199.

61

Cha, M. Y.; Da, P. M.; Wang, J.; Wang, W. Y.; Chen, Z. H.; Xiu, F. X.; Zheng, G. F.; Wang, Z. S. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J. Am. Chem. Soc. 2016, 138, 8581–8587.

62

Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res. 2019, 12, 1155–1166

63

Liao, J. F.; Chen, Y. X.; Wei, J. H.; Cai, Y. T.; Wang, X. D.; Xu, Y. F.; Kuang, D. B. A facile method to fabricate high-quality perovskite nanocrystals based on single crystal powder. Nano Res. 2019, 12, 2640–2645.

64

Zhang, J. B.; Fan, L. W.; Li, J. L.; Liu, X. F.; Wang, R. W.; Wang, L.; Tu, G. L. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Res. 2019, 12, 121–127.

65

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

66

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

67

Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.

68

Zhai, W.; Lin, J.; Li, Q. L.; Zheng, K.; Huang, Y.; Yao, Y. Z.; He, X.; Li, L. L.; Yu, C.; Liu, C. et al. Solvothermal synthesis of ultrathin cesium lead halide perovskite nanoplatelets with tunable lateral sizes and their reversible transformation into Cs4PbBr6 nanocrystals. Chem. Mater. 2018, 30, 3714–3721.

69

Zhai, W.; Lin, J.; Li, C.; Hu, S. M.; Huang, Y.; Yu, C.; Wen, Z. K.; Liu, Z. Y.; Fang, Y.; Tang, C. C. Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale 2018, 10, 21451–21458.

70

Chen, M.; Hu, H. C.; Tan, Y. S.; Yao, N.; Zhong, Q. X.; Sun, B. Q.; Cao, M. H.; Zhang, Q.; Yin, Y. D. Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 2018, 53, 559–566.

71

Pan, Q.; Hu, H. C.; Zou, Y. T.; Chen, M.; Wu, L. Z.; Yang, D.; Yuan, X. L.; Fan, J.; Sun, B. Q.; Zhang, Q. Microwave-assisted synthesis of high-quality "all-inorganic" CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 2017, 5, 10947–10954.

72

Long, Z.; Ren, H.; Sun, J. H.; Ouyang, J.; Na, N. High-throughput and tunable synthesis of colloidal CsPbX3 perovskite nanocrystals in a heterogeneous system by microwave irradiation. Chem. Commun. 2017, 53, 9914–9917.

73

Liu, H. W.; Wu, Z. N.; Gao, H.; Shao, J. R.; Zou, H. Y.; Yao, D.; Liu, Y.; Zhang, H.; Yang, B. One-step preparation of cesium lead halide CsPbX3 (X = CI, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Appl. Mater. Interfaces 2017, 9, 42919–42927.

74

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

75

Rao, L. S.; Ding, X. R.; Du, X. W.; Liang, G. W.; Tang, Y.; Tang, K. R.; Zhang, J. Z. Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation. Beilstein J. Nanotech. 2019, 10, 666–676.

76

Rao, L. S.; Tang, Y.; Song, C. J.; Xu, K.; Vickers, E. T.; Naghadeh, S. B.; Ding, X. R.; Li, Z. T.; Zhang, J. Z. Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication. Chem. Mater. 2019, 31, 365–375.

77

Bohun, A.; Dolejší, J.; Barta, Č. The absorption and luminescence of (PbCl6)4– and (PbBr6)4– complexes. Czech. J. Phys. B 1970, 20, 803–807.

78

Kondo, S.; Amaya, K.; Saito, T. Localized optical absorption in Cs4PbBr6. J. Phys. : Condens. Matter 2002, 14, 2093.

79

Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017, 17, 1924–1930.

80

Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.

81

Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett. 2017, 2, 2445–2448.

82

Shen, W.; Ruan, L. F.; Shen, Z. T.; Deng, Z. T. Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 2018, 54, 2804–2807.

83

Li, P. L.; Yang, D.; Zhong, Q. X.; Zhang, Y.; Chen, M.; Jiang, S.; Chen, J. X.; Cao, M. H.; Zhang, Q.; Yin, Y. D. Photoreversible luminescence switching of CsPbI3 nanocrystals sensitized by photochromic AgI nanocrystals. Nanoscale 2019, 11, 3193–3199.

84

Li, Y. L.; Ding, T.; Luo, X.; Chen, Z. W.; Liu, X.; Lu, X.; Wu, K. F. Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling. Nano Res. 2019, 12, 619–623.

85

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

86

Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

87

Yassitepe, E.; Yang, Z. Y.; Voznyy, O.; Kim, Y.; Walters, G.; Castañeda, J. A.; Kanjanaboos, P.; Yuan, M. J.; Gong, X. W.; Fan, F. J. et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2016, 26, 8757–8763.

88

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

89

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

90

Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.

91

Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B. et al. Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3 (X = Cl, Br, I) nanorods. Angew. Chem., Int. Ed. 2018, 57, 16094–16098.

92

Amgar, D.; Stern, A.; Rotem, D.; Porath, D.; Etgar, L. Tunable length and optical properties of CsPbX3 (X = Cl, Br, I) nanowires with a few unit cells. Nano Lett. 2017, 17, 1007–1013.

93

Li, P. L.; Yang, D.; Tan, Y. S.; Cao, M. H.; Zhong, Q. X.; Chen, M.; Hu, H. C.; Sun, B. Q.; Xu, Y.; Zhang, Q. Consecutive interfacial transformation of cesium lead halide nanocubes to ultrathin nanowires with improved stability. ACS Appl. Mater. Interfaces 2019, 11, 3351–3359.

94

Lou, Y. B.; Niu, Y. D.; Yang, D. W.; Xu, Q. L.; Hu, Y. H.; Shen, Y.; Ming, J.; Chen, J. X.; Zhang, L. J.; Zhao, Y. X. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN doped CsPbBr3 perovskite nanocrystals. Nano Res. 2018, 11, 2715–2723.

95

Cao, F.; Yu, D. J.; Gu, Y.; Chen, J.; Zeng, H. B. Novel optoelectronic rotors based on orthorhombic CsPb(Br/I)3 nanorods. Nanoscale 2019, 11, 3117–3122.

96

Tang, X. S.; Zu, Z. Q.; Shao, H. B.; Hu, W.; Zhou, M.; Deng, M.; Chen, W. W.; Zang, Z. G.; Zhu, T.; Xue, J. M. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 2016, 8, 15158–15161.

97

Yang, D.; Zou, Y. T.; Li, P. L.; Liu, Q. P.; Wu, L. Z.; Hu, H. C.; Xu, Y.; Sun, B. Q.; Zhang, Q.; Lee, S. T. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy 2018, 47, 235–242.

98

Si, J. J.; Liu, Y.; He, Z. F.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M. M.; Tian, H. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017, 11, 11100–11107.

99

Sheng, X. X.; Chen, G. Y.; Wang, C.; Wang, W. Q.; Hui, J. F.; Zhang, Q.; Yu, K. H.; Wei, W.; Yi, M. D.; Zhang, M. et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv. Funct. Mater. 2018, 28, 1800283.

100

He, T. C.; Li, J. Z.; Qiu, X.; Xiao, S. Y.; Yin, C.; Lin, X. D. Highly enhanced normalized-volume multiphoton absorption in CsPbBr3 2D nanoplates. Adv. Opt. Mater. 2018, 6, 1800843.

101

Wang, L. L.; Fu, K. F.; Sun, R. J.; Lian, H. Q.; Hu, X.; Zhang, Y. H. Ultra-stable CsPbBr3 perovskite nanosheets for X-Ray imaging screen. Nano-Micro Lett. 2019, 11, 52.

102

Xie, M. L.; Liu, H.; Chun, F. J.; Deng, W.; Luo, C.; Zhu, Z. H.; Yang, M.; Li, Y. M.; Li, W.; Yan, W. et al. Aqueous phase exfoliating quasi-2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 2019, 15, 1901994.

103

Li, Z. J.; Hofman, E.; Davis, A. H.; Maye, M. M.; Zheng, W. W. General strategy for the growth of CsPbX3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem. Mater. 2018, 30, 3854–3860.

104

Zheng, Z.; Wang, X. X.; Shen, Y. W.; Luo, Z. Y.; Li, L. G.; Gan, L.; Ma, Y.; Li, H. Q.; Pan, A. L.; Zhai, T. Y. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv. Opt. Mater. 2018, 6, 1800879.

105

Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

106

Wu, H.; Zhang, Y.; Lu, M.; Zhang, X. Y.; Sun, C.; Zhang, T. Q.; Colvin, V. L.; Yu, W. W. Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance. Nanoscale 2018, 10, 4173–4178.

107

Chen, W. W.; Tang, X. S.; Wangyang, P. H.; Yao, Z. Q.; Zhou, D.; Chen, F. G.; Li, S. Q.; Lin, H.; Zeng, F. J.; Wu, D. F. et al. Surface-passivated cesium lead halide perovskite quantum dots: Toward efficient light-emitting diodes with an inverted sandwich structure. Adv. Opt. Mater. 2018, 6, 1800007.

108

Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134– 8138.

109

Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J. K.; Sinatra, L.; Alyami, N.; Zhao, C. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033.

110

Lu, C.; Li, H.; Kolodziejski, K.; Dun, C. C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.

111

Wang, H.; Sui, N.; Bai, X.; Zhang, Y.; Rice, Q.; Seo, F. J.; Zhang, Q. B.; Colvin, V. L.; Yu, W. W. Emission recovery and stability enhancement of inorganic perovskite quantum dots. J. Phys. Chem. Lett. 2018, 9, 4166–4173.

112

Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 2017, 33, 12689–12696.

113

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

114

Alpert, M. R.; Niezgoda, J. S.; Chen, A. Z.; Foley, B. J.; Cuthriell, S.; Yoon, L. U.; Choi, J. J. Colloidal nanocrystals as a platform for rapid screening of charge trap passivating molecules for metal halide perovskite thin films. Chem. Mater. 2018, 30, 4515–4526.

115

Tan, Y. S.; Zou, Y. T.; Wu, L. Z.; Huang, Q.; Yang, D.; Chen, M.; Ban, M. Y.; Wu, C.; Wu, T.; Bai, S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3784–3792.

116

Zhong, Q. X.; Cao, M. H.; Xu, Y. F.; Li, P. L.; Zhang, Y.; Hu, H. C.; Yang, D.; Xu, Y.; Wang, L.; Li, Y. Y. et al. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett. 2019, 19, 4151–4157.

117

Wang, C. J.; Chesman, A. S. R.; Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 2017, 53, 232–235.

118

González-Pedro, V.; Veldhuis, S. A.; Begum, R.; Bañuls, M. J.; Bruno, A.; Mathews, N.; Mhaisalkar, S.; Maquieira, Á. Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino-functionalized silanes. ACS Energy Lett. 2018, 3, 1409–1414.

119

Huang, S. Q.; Wang, B.; Zhang, Q.; Li, Z. C.; Shan, A. D.; Li, L. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Adv. Opt. Mater. 2018, 6, 1701106.

120

Shao, G. Z.; Liu, S. N.; Ding, L.; Zhang, Z. L.; Xiang, W. D.; Liang, X. J. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes. Chem. Eng. J. 2019, 375, 122031.

121

Ye, S.; Yu, M. H.; Yan, W.; Song, J.; Qu, J. L. Enhanced photoluminescence of CsPbBr3@Ag hybrid perovskite quantum dots. J. Mater. Chem. C 2017, 5, 8187–8193.

122

Zhang, X. L.; Xu, B.; Wang, W. G.; Liu, S.; Zheng, Y. J.; Chen, S. M.; Wang, K.; Sun, X. W. Plasmonic perovskite light-emitting diodes based on the Ag-CsPbBr3 system. ACS Appl. Mater. Interfaces 2017, 9, 4926–4931.

123

Lu, M.; Zhang, X. Y.; Bai, X.; Wu, H.; Shen, X. Y.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Song, H. W.; Yu, W. W. et al. Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%. ACS Energy Lett. 2018, 3, 1571–1577.

124

Li, H. B.; Qian, Y.; Xing, X.; Zhu, J. F.; Huang, X. Y.; Jing, Q.; Zhang, W. H.; Zhang, C. F.; Lu, Z. D. Enhancing luminescence and photostability of CsPbBr3 nanocrystals via surface passivation with silver complex. J. Phys. Chem. C 2018, 122, 12994–13000.

125

Tang, Y. Y.; Cao, X. Y.; Honarfar, A.; Abdellah, M.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Hammarström, L.; Sa, J.; Canton, S. E. et al. Inorganic ions assisted the anisotropic growth of CsPbCl3 nanowires with surface passivation effect. ACS Appl. Mater. Interfaces 2018, 10, 29574–29582.

126

Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

127

Wang, Y.; Zhi, M.; Chang, Y. Q.; Zhang, J. P.; Chan, Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett. 2018, 18, 4976–4984.

128

Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.

129

Wu, Y.; Wei, C. T.; Li, X. M.; Li, Y. L.; Qiu, S. C.; Shen, W.; Cai, B.; Sun, Z. G.; Yang, D. D.; Deng, Z. T. et al. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 2018, 3, 2030–2037.

130

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566– 6569.

131

Ahmed, T.; Seth, S.; Samanta, A. Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chem. Mater. 2018, 30, 3633–3637.

132

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

133

Udayabhaskararao, T.; Kazes, M.; Houben, L.; Lin, H.; Oron, D. Nucleation, growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 2017, 29, 1302–1308.

134

Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., Int. Ed. 2017, 56, 10696–10701.

135

Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.

136

Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., Int. Ed. 2018, 57, 8881–8885.

137

Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088– 10094.

138

Li, X. M.; Wang, Y.; Sun, H. D.; Zeng, H. B. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 2017, 29, 1701185.

139

Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412.

140

Zhong, Q. X.; Cao, M. H.; Hu, H. C.; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 2018, 12, 8579–8587.

141

Zhang, J. L.; Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 2010, 3, 715– 726.

142

Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

143

Zhou, L.; Yu, K.; Yang, F.; Zheng, J.; Zuo, Y. H.; Li, C. B.; Cheng, B. W.; Wang, Q. M. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans. 2017, 46, 1766–1769.

144

Zhou, L.; Yu, K.; Yang, F.; Cong, H.; Wang, N.; Zheng, J.; Zuo, Y. H.; Li, C. B.; Cheng, B. W.; Wang, Q. M. Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: Much faster electron injection. J. Mater. Chem. C 2017, 5, 6224–6233.

145

Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.

146

Liu, H. Y.; Tan, Y. S.; Cao, M. H.; Hu, H. C.; Wu, L. Z.; Yu, X. Y.; Wang, L.; Sun, B. Q.; Zhang, Q. Fabricating CsPbX3-based type Ⅰ and type Ⅱ heterostructures by tuning the halide composition of Janus CsPbX3/ZrO2 nanocrystals. ACS Nano 2019, 13, 5366–5374.

147

Chen, W. W.; Hao, J. Y.; Hu, W.; Zang, Z. G.; Tang, X. S.; Fang, L.; Niu, T. C.; Zhou, M. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 2017, 13, 1604085.

148

Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

149

Wu, H. L.; Kang, Z.; Zhang, Z. H.; Zhang, Z.; Si, H. N.; Liao, Q. L.; Zhang, S. C.; Wu, J.; Zhang, X. K.; Zhang, Y. Van der Waals heterostructures: Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 2018, 28, 1870239.

150

Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H. Y.; Nam, K. T. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2016, 2, 16185.

151

Wu, Y. Q.; Wang, P.; Guan, Z. H.; Liu, J. X.; Wang, Z. Y.; Zheng, Z. K.; Jin, S. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3–xIx achieved by bandgap funneling of charge carriers. ACS Catal. 2018, 8, 10349–10357.

152

Zhao, H.; Li, Y. X.; Zhang, B.; Xu, T.; Wang, C. Y. PtIx/[(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy 2018, 50, 665–674.

153

Wang, L.; Xiao, H.; Cheng, T.; Li, Y. Y.; Goddard, W. A. Pb-activated amine-assisted photocatalytic hydrogen evolution reaction on organic–inorganic perovskites. J. Am. Chem. Soc. 2018, 140, 1994– 1997.

154

Song, X. L.; Wei, G. F.; Sun, J.; Peng, C. D.; Yin, J. J.; Zhang, X.; Jiang, Y. L.; Fei, H. H. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 2020, 3, 1027–1033.

155

Pavliuk, M. V.; Abdellah, M.; Sá, J. Hydrogen evolution with CsPbBr3 perovskite nanocrystals under visible light in solution. Mater. Today Commun. 2018, 16, 90–96.

156

Guan, Z. H.; Wu, Y. Q.; Wang, P.; Zhang, Q. Q.; Wang, Z. Y.; Zheng, Z. K.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Perovskite photocatalyst CsPbBr3–xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B: Environ. 2019, 245, 522–527.

157

Hou, J. G.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Liang, F.; Sun, Y. Q.; Lin, Z. S.; Sun, L. C. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chem. —Eur. J. 2017, 23, 9481–9485.

158

Guo, S. H.; Zhou, J.; Zhao, X.; Sun, C. Y.; You, S. Q.; Wang, X. L.; Su, Z. M. Enhanced CO2 photoreduction via tuning halides in perovskites. J. Catal. 2019, 369, 201–208.

159

Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.

160

Wang, Q. L.; Tao, L. M.; Jiang, X. X.; Wang, M. K.; Shen, Y. Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Appl. Surf. Sci. 2019, 465, 607–613.

161

Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 13570–13574.

162

Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.

163

Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295.

164

Yang, M. Z.; Xu, Y. F.; Liao, J. F.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. Constructing CsPbBrxI3–x nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity. J. Mater. Chem. A 2019, 7, 5409–5415.

165

Xu, Y. F.; Wang, X. D.; Liao, J. F.; Chen, B. X.; Chen, H. Y.; Kuang, D. B. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation. Adv. Mater. Interfaces 2018, 5, 1801015.

166

Jiang, Y.; Liao, J. F.; Xu, Y. F.; Chen, H. Y.; Wang, X. D.; Kuang, D. B. Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 2019, 7, 13762–13769.

167

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434– 13441.

168

Fu, Q.; Draxl, C. Hybrid organic-inorganic perovskites as promising substrates for Pt single-atom catalysts. Phys. Rev. Lett. 2019, 122, 046101.

169

Tang, C.; Chen, C. Y.; Xu, W. W.; Xu, L. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst. J. Mater. Chem. A 2019, 7, 6911–6919.

170

Xu, Y. F.; Yang, M. Z.; Chen, H. Y.; Liao, J. F.; Wang, X. D.; Kuang, D. B. Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet Schottky-junction photocatalyst. ACS Appl. Energy Mater. 2018, 1, 5083–5089.

171

Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.

172

Zhao, Y. Y.; Shi, H. X.; Hu, X. Y.; Liu, E. Z.; Fan, J. Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation. Chem. Eng. J. 2020, 381, 122692.

173

Zhao, Y. Y.; Wang, Y. B.; Liang, X. H.; Shi, H. X.; Wang, C. J.; Fan, J.; Hu, X. Y.; Liu, E. Z. Enhanced photocatalytic activity of Ag–CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl. Catal. B: Environ. 2019, 247, 57–69.

174

Nicewicz, D. A.; MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008, 322, 77–80.

175

Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Photoredox activation for the direct β-arylation of ketones and aldehydes. Science 2013, 339, 1593–1596.

176

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.

177

Zhu, X. L.; Lin, Y. X.; Sun, Y.; Beard, M. C.; Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 2019, 141, 733–738.

178

Zhu, X. L.; Lin, Y. X.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 2843.

179

Wong, Y. C.; De Andrew Ng, J.; Tan, Z. K. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites. Adv. Mater. 2018, 30, 1800774.

180

Chen, K.; Deng, X. H.; Dodekatos, G.; Tüysüz, H. Photocatalytic polymerization of 3, 4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots. J. Am. Chem. Soc. 2017, 139, 12267–12273.

181

Hong, Z. H.; Chong, W. K.; Ng, A. Y. R.; Li, M. J.; Ganguly, R.; Sum, T. C.; Soo, H. S. Hydrophobic metal halide perovskites for visible-light photoredox C-C bond cleavage and dehydrogenation catalysis. Angew. Chem., Int. Ed. 2019, 58, 3456–3460.

182

Dai, Y. T.; Tüysüz, H. Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides. ChemSusChem 2019, 12, 2587–2592.

183

Schünemann, S.; van Gastel, M.; Tüysüz, H. A CsPbBr3/TiO2 composite for visible-light-driven photocatalytic benzyl alcohol oxidation. ChemSusChem 2018, 11, 2057–2061.

184

Wu, W. B.; Wong, Y. C.; Tan, Z. K.; Wu, J. Photo-induced thiol coupling and C–H activation using nanocrystalline lead-halide perovskite catalysts. Catal. Sci. Technol. 2018, 8, 4257–4263.

185

Chen, P. F.; Ong, W. J.; Shi, Z. H.; Zhao, X. J.; Li, N. Pb-based halide perovskites: Recent advances in photo(electro)catalytic applications and looking beyond. Adv. Funct. Mater. 2020, 30, 1909667.

186

Kang, C. T.; Rao, H. S.; Fang, Y. P.; Zeng, J. J.; Pan, Z. Z.; Zhong, X. H. Antioxidative stannous oxalate derived lead-free stable CsSnX3 (X = Cl, Br, and I) perovskite nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 660–665.

187

Fan, Q. Q.; Biesold-McGee G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

188

Cai, T.; Shi, W. W.; Hwang, S.; Kobbekaduwa, K.; Nagaoka, Y.; Yang, H. J.; Hills-Kimball, K.; Zhu, H.; Wang, J. Y.; Wang, Z. G. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 2020, 142, 11927–11936.

189

Tang, Y. Q.; Mak, C. H.; Liu, R. G.; Wang, Z. K.; Ji, L.; Song, H. S.; Tan, C. Y.; Barrière, F.; Hsu, H. Y. In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2006919.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2021
Revised: 22 January 2021
Accepted: 23 January 2021
Published: 03 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21673150, 51802206, and 51920105004) and Natural Science Foundation of Jiangsu Province (No. BK20180846). Y. X. acknowledges start-up supports from Guangdong University of technology.

Return