Journal Home > Volume 14 , Issue 11

The mechanism and kinetics of the electro-catalytic oxidation of hydrazine by graphene oxide platelets randomly decorated with palladium nanoparticles are deduced using single particle impact electrochemical measurements in buffered aqueous solutions across the pH range 2–11. Both hydrazine, N2H4, and protonated hydrazine N2H5+ are shown to be electroactive following Butler- Volmer kinetics, of which the relative contribution is strongly pH-dependent. The negligible interconversion between N2H4 and N2H5+ due to the sufficiently short timescale of the impact voltammetry, allows the analysis of the two electron transfer rates from impact signals thus reflecting the composition of the bulk solution at the pH in question. In this way the rate determining step in the oxidation of each specie is deduced to be a one electron step in which no protons are released and so likely corresponds to the initial formation of a very short-lived radical cation either in solution or adsorbed on the platelet. Overall the work establishes a generic method for the elucidation of the rate determining electron transfer in a multistep process free from any complexity imposed by preceding or following chemical reactions which occur on the timescale of conventional voltammetry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation

Show Author's information Ruiyang Miao1Lidong Shao2Richard G Compton1
Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford OX1 3QZ UK
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power Shanghai University of Electric Power2103 Pingliang Road, Shanghai 200090 China

Abstract

The mechanism and kinetics of the electro-catalytic oxidation of hydrazine by graphene oxide platelets randomly decorated with palladium nanoparticles are deduced using single particle impact electrochemical measurements in buffered aqueous solutions across the pH range 2–11. Both hydrazine, N2H4, and protonated hydrazine N2H5+ are shown to be electroactive following Butler- Volmer kinetics, of which the relative contribution is strongly pH-dependent. The negligible interconversion between N2H4 and N2H5+ due to the sufficiently short timescale of the impact voltammetry, allows the analysis of the two electron transfer rates from impact signals thus reflecting the composition of the bulk solution at the pH in question. In this way the rate determining step in the oxidation of each specie is deduced to be a one electron step in which no protons are released and so likely corresponds to the initial formation of a very short-lived radical cation either in solution or adsorbed on the platelet. Overall the work establishes a generic method for the elucidation of the rate determining electron transfer in a multistep process free from any complexity imposed by preceding or following chemical reactions which occur on the timescale of conventional voltammetry.

Keywords: graphene oxide, palladium nanoparticles, single entity electrochemistry, hydrazine electro-oxidation, electro-catalysis

References(51)

1

Chen, C. H.; Jacobse, L.; McKelvey, K.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Voltammetric scanning electrochemical cell microscopy: Dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal. Chem. 2015, 87, 5782–5789.

2

Harraz, F. A.; Ismail, A. A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S. Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 234, 573–582.

3

Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. B.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem. , Int. Ed. 2019, 131, 13600– 13605.

4

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

5

Sakamoto, T.; Asazawa, K.; Martinez, U.; Halevi, B.; Suzuki, T.; Arai, S.; Matsumura, D.; Nishihata, Y.; Atanassov, P.; Tanaka, H. Electrooxidation of hydrazine hydrate using Ni–La catalyst for anion exchange membrane fuel cells. J. Power Sources 2013, 234, 252–259.

6

Lindley, B. M.; Appel, A. M.; Krogh-Jespersen, K.; Mayer, J. M.; Miller, A. J. M. Evaluating the thermodynamics of electrocatalytic N2 reduction in acetonitrile. ACS Energy Lett. 2016, 1, 698–704.

7

Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press: Boca Raton, FL, USA, 2004.

8

Hall, Jr. H. K. Correlation of the base strengths of amines. J. Am. Chem. Soc. 1957, 79, 5441–5444.

9

Karp, S.; Meites, L. The voltammetric characteristics and mechanism of electroöxidation of hydrazine. J. Am. Chem. Soc. 1962, 84, 906–912.

10

Álvarez-Ruiz, B.; Gómez, R.; Orts, J. M.; Feliu, J. M. Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media. J. Electrochem. Soc. 2002, 149, D35–D45.

11

Burke, L. D.; Casey, J. K. The electrocatalytic behaviour of palladium in acid and base. J. Appl. Electrochem. 1993, 23, 573–582.

12

Miao, R. Y.; Chen, L. F.; Compton, R. G. Electro-oxidation of hydrazine shows marcusian electron transfer kinetics. Sci. China Chem. 2021, 64, 322–329.

13

Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024–11030.

14

Wang, Y.; Ward, K. R.; Laborda, E.; Salter, C.; Crossley, A.; Jacobs, R. M. J.; Compton, R. G. A joint experimental and computational search for authentic nano-electrocatalytic effects: Electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. Small 2013, 9, 478–486.

15

Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436– 1439.

16

Kätelhön, E.; Chen, L. F.; Compton, R. G. Nanoparticle electrocatalysis: Unscrambling illusory inhibition and catalysis. Appl. Mater. Today 2019, 15, 139–144.

17

Chen, L. F.; Kätelhön, E.; Compton, R. G. Particle-modified electrodes: General mass transport theory, experimental validation, and the role of electrostatics. Appl. Mater. Today 2020, 18, 100480.

18

Streeter, I.; Wildgoose, G. G.; Shao, L. D.; Compton, R. G. Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens. Actuators B Chem. 2008, 133, 462–466.

19

Henstridge, M. C.; Dickinson, E. J. F.; Aslanoglu, M.; Batchelor- McAuley, C.; Compton, R. G. Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens. Actuators B Chem. 2010, 145, 417–427.

20

Sims, M. J.; Rees, N. V.; Dickinson, E. J. F.; Compton, R. G. Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG). Sens. Actuators B Chem. 2010, 144, 153–158.

21

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

22

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

23

Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415.

24

Stevenson, K. J.; Tschulik, K. A materials driven approach for understanding single entity nano impact electrochemistry. Curr. Opin. Electrochem. 2017, 6, 38–45.

25

Xu, W.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Single particle electro­chemistry of collision. Small 2019, 15, 1804908.

26

Sokolov, S. V.; Eloul, S.; Kätelhön, E.; Batchelor-McAuley, C.; Compton, R. G. Electrode–particle impacts: A users guide. Phys. Chem. Chem. Phys. 2017, 19, 28–43.

27

Li, X. T.; Batchelor-McAuley, C.; Whitby, S. A. I.; Tschulik, K.; Shao, L. D.; Compton, R. G. Single nanoparticle voltammetry: Contact modulation of the mediated current. Angew. Chem., Int. Ed. 2016, 55, 4296–4299.

28

Hummers, Jr. W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

29

Ellison, J.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. The use of cylindrical micro-wire electrodes for nano-impact experiments; facilitating the sub-picomolar detection of single nanoparticles. Sens. Actuators B Chem. 2014, 200, 47–52.

30

Kätelhön, E.; Tanner, E. E. L.; Batchelor-McAuley, C.; Compton, R. G. Destructive nano-impacts: What information can be extracted from spike shapes? Electrochim. Acta 2016, 199, 297–304.

31

Miao, R. Y.; Chen, L. F.; Shao, L. D.; Zhang, B. S.; Compton, R. G. Electron transfer to decorated graphene oxide particles. Angew. Chem., Int. Ed. 2019, 58, 12549–12552.

32

Xie, Y. N.; Wang, J.; Huang, X.; Luo, B. W.; Yu, W. Z.; Shao, L. D. Palladium nanoparticles supported on graphene sheets incorporating boron oxides (BxOy) for enhanced formic acid oxidation. Electrochem. Commun. 2017, 74, 48–52.

33

Krittayavathananon, A.; Srimuk, P.; Luanwuthi, S.; Sawangphruk, M. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion. Anal. Chem. 2014, 86, 12272–12278.

34

Ejaz, A.; Ahmed, M. S.; Jeon, S. Highly efficient benzylamine functionalized graphene supported palladium for electrocatalytic hydrazine determination. Sens. Actuators B Chem. 2015, 221, 1256– 1263.

35

Chinchilla, R.; Nájera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 2014, 114, 1783–1826.

36

Serov, A.; Kwak, C. Direct hydrazine fuel cells: A review. Appl. Catal. B Environ. 2010, 98, 1–9.

37

Zhang, J. H.; Zhou, Y. G. Nano-impact electrochemistry: Analysis of single bioentities. TrAC Trends Anal. Chem. 2020, 123, 115768.

38

Cheng, W.; Compton, R. G. Electrochemical detection of nanoparticles by "nano-impact" methods. TrAC Trends Anal. Chem. 2014, 58, 79–89.

39

Hodson, H.; Li, X. T.; Batchelor-McAuley, C.; Shao, L. D.; Compton, R. G. Single nanotube voltammetry: Current fluctuations are due to physical motion of the nanotube. J. Phys. Chem. C 2016, 120, 6281–6286.

40

Albery, J. Electrode Kinetics; Clarendon Press: Oxford, 1975.

41

Compton, R. G.; Banks, C. E. Understanding Voltammetry, 3rd ed.; World Scientific: Singapore, 2018.

42

Guidelli, R.; Compton, R. G.; Feliu, J. M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the transfer coefficient in electrochemistry: An assessment (IUPAC technical report). Pure Appl. Chem. 2014, 86, 245–258.

43

Ram, M. S.; Hupp, J. T. Linear free energy relations for multielectron transfer kinetics: A brief look at the Broensted/Tafel analogy. J. Phys. Chem. 1990, 94, 2378–2380.

44

Cutress, I. J.; Compton, R. G. Theory of square, rectangular, and microband electrodes through explicit GPU simulation. J. Electroanal. Chem. 2010, 645, 159–166.

45

Aoki, K. Theory of ultramicroelectrodes. Electroanalysis 1993, 5, 627–639.

46

Rudolph, M.; Reddy, D. P.; Feldberg, S. W. A simulator for cyclic voltammetric responses. Anal. Chem. 1994, 66, 589A–600A.

47

Szabo, A.; Cope, D. K.; Tallman, D. E.; Kovach, P. M.; Wightman, R. M. Chronoamperometric current at hemicylinder and band microelectrodes: Theory and experiment. J. Electroanal. Chem. Interfacial Electrochem. 1987, 217, 417–423.

48

Kovach, P. M.; Caudill, W. L.; Peters, D. G.; Wightman, R. M. Faradaic electrochemistry at microcylinder, band, and tubular band electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1985, 185, 285–295.

49

Forster, R. J. Microelectrodes: New dimensions in electrochemistry. Chem. Soc. Rev. 1994, 23, 289–297.

50

Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 1991, 251, 919–922.

51

Hush, N. S. Electron transfer in retrospect and prospect 1: Adiabatic electrode processes. J. Electroanal. Chem. 1999, 470, 170–195.

File
12274_2021_3353_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 26 November 2020
Revised: 12 January 2021
Accepted: 19 January 2021
Published: 15 February 2021
Issue date: November 2021

Copyright

© The Author(s) 2021

Rights and permissions

Return