Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Poly[(9, 9-dioctylfluorenyl-2, 7-diyl)-alt(4, 4'-(N-(4-butylphenyl))] (TFB), one of the most popular and widely used hole-transport layer (HTL) materials, has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes (QLEDs) due to its suitable energy level and high mobility. However, there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL. TFB normally suffers from the interlayer mixing and erosion, and low surface energy against the good film formation. Here, a novel environment-friendly binary solvent system was established for formulating quantum dot (QD) inks, which is based on mixing halogen-free alkane solvents of decalin and n-tridecane. The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3, at which a stable ink jetting flow and coffee-ring free QD films could be formed. To research the influence of substrate surface on the formation of inkjet-printed QD films, TFB was annealed at different temperatures, and the optimum annealing temperature was found to enable high quality inkjet-printed QD film. Inkjet-printed red QLED was ultimately manufactured. A maximum 18.3% of external quantum efficiency (EQE) was achieved, reaching 93% of the spin-coated QLED, which is the best reported high efficiency inkjet-printed red QLEDs to date. In addition, the inkjet-printed QLED achieved similar T75 operational lifetime (27 h) as compared to the spin-coated reference QLED (28 h) at 2, 000 cd·m−2. This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.
Bae, W. K.; Kwak, J.; Lim, J.; Lee, D.; Nam, M. K.; Char, K.; Lee, C.; Lee, S. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 2010, 10, 2368–2373.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high- performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Bae, W. K.; Lim, J.; Lee, D.; Park, M.; Lee, H.; Kwak, J.; Char, K.; Lee, C.; Lee, S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv. Mater. 2014, 26, 6387–6393.
Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.
Kim, S.; Kim, J.; Kim, D.; Kim, B.; Chae, H.; Yi, H.; Hwang, B. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 26333–26338.
Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light- emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.
Cao, F.; Zhao, D. W.; Shen, P. Y.; Wu, J. L.; Wang, H. R.; Wu, Q. Q.; Wang, F. J.; Yang, X. Y. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Adv. Opt. Mater. 2018, 6, 1800652.
Shen, P. Y.; Cao, F.; Wang, H. R.; Wei, B.; Wang, F. J.; Sun, X. W.; Yang, X. Y. Solution-processed double-junction quantum-dot light-emitting diodes with an EQE of over 40%. ACS Appl. Mater. Interfaces 2019, 11, 1065–1070.
Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light- emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.
Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. J.; Jia, Y. et al. Visible quantum dot light- emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.
Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L. et al. High- performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345.
Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.
Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light- emitting diode. Adv. Funct. Mater. 2017, 27, 1603325.
Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double- heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.
Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light- emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.
Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.
Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.
Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.
Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969–973.
Jiang, C. B.; Zhong, Z. M.; Liu, B. Q.; He, Z. W.; Zou, J. H.; Wang, L.; Wang, J.; Peng, J. B.; Cao, Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces 2016, 8, 26162–26168.
Liu, Y.; Li, F. S.; Xu, Z. W.; Zheng, C. X.; Guo, T. L; Xie, X. W; Qian, L.; Fu, D.; Yan, X. L. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces 2017, 9, 25506–25512.
Zhou, L.; Yang, L.; Yu, M. J.; Jiang, Y.; Liu, C. F.; Lai, W. Y.; Huang, W. Inkjet-printed small-molecule organic light-emitting diodes: Halogen-free inks, printing optimization, and large-area patterning. ACS Appl. Mater. Interfaces 2017, 9, 40533–40540.
Xie, L. M.; Xiong, X. Y.; Chang, Q. W.; Chen, X. L; Wei, C. T.; Li, X.; Zhang, M.; Su, W. M.; Cui, Z. Inkjet-printed high-efficiency multilayer QLEDs based on a novel crosslinkable small-molecule hole transport material. Small 2019, 15, 1900111.
Xiong, X. Y.; Wei, C. T; Xie, L. M.; Chen, M.; Tang, P. Y.; Shen, W.; Deng, Z. T.; Li, X.; Duan, Y. J.; Su, W. M. et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Org. Electron. 2019, 73, 247–254.
Xiang, C. Y.; Wu, L. J.; Lu, Z. Z; Li, M. L; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.
Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High- resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.
Li, D. Y.; Wang, J. J.; Li, M. Z.; Xie, G. C.; Guo, B.; Mu, L.; Li, H. Y.; Wang, J.; Yip, H. L.; Peng, J. B. Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 2020, 5, 2000099.
Gaworski, C. L.; Haun, C. C.; MacEwen, J. D.; Vernot, E. H.; Bruner, R. H.; Amster, R. L.; Cowan, M. J. Jr. A 90-day vapor inhalation toxicity study of decalin. Fundam. Appl. Toxicol. 1985, 5, 785–793.
Jang, D.; Kim, D.; Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir 2009, 25, 2629–2635.
Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094.
Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 2008, 18, 229–234.
Ding, Z. C.; Xing, R. B.; Fu, Q.; Ma, D. G.; Han, Y. C. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org. Electron. 2011, 12, 703–709.
Liu, H. M.; Xu, W.; Tan, W. Y.; Zhu, X. H.; Wang, J.; Peng, J. B.; Cao, Y. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 2016, 465, 106–111.
Ma, F.; Xu, K. W. Using dangling bond density to characterize the surface energy of nanomaterials. Surf. Interface Anal. 2007, 39, 611–614.
Yang, Z. Q.; Huck, W. T. S.; Clarke, S. M.; Tajbakhsh, A. R.; Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nat. Mater. 2005, 4, 486–490.
Han, Y. J.; An, K.; Kang, K. T.; Ju, B. K.; Cho, K. H. Optical and electrical analysis of annealing temperature of high-molecular weight hole transport layer for quantum-dot light-emitting diodes. Sci. Rep. 2019, 9, 10385.