AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system

Ming Chen1,§Liming Xie1,§Changting Wei1Yuan-Qiu-Qiang Yi1Xiaolian Chen1Jian Yang1Jinyong Zhuang2Fushan Li3Wenming Su1( )Zheng Cui1
Printable Electronics Research Center Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesSuzhou 215123 China
Guangdong Juhua Printed Display Technol Company Ltd.Guangzhou 510700 China
Institute of Optoelectronic Technology Fuzhou UniversityFuzhou 350002 China

§Ming Chen and Liming Xie contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Poly[(9, 9-dioctylfluorenyl-2, 7-diyl)-alt(4, 4'-(N-(4-butylphenyl))] (TFB), one of the most popular and widely used hole-transport layer (HTL) materials, has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes (QLEDs) due to its suitable energy level and high mobility. However, there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL. TFB normally suffers from the interlayer mixing and erosion, and low surface energy against the good film formation. Here, a novel environment-friendly binary solvent system was established for formulating quantum dot (QD) inks, which is based on mixing halogen-free alkane solvents of decalin and n-tridecane. The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3, at which a stable ink jetting flow and coffee-ring free QD films could be formed. To research the influence of substrate surface on the formation of inkjet-printed QD films, TFB was annealed at different temperatures, and the optimum annealing temperature was found to enable high quality inkjet-printed QD film. Inkjet-printed red QLED was ultimately manufactured. A maximum 18.3% of external quantum efficiency (EQE) was achieved, reaching 93% of the spin-coated QLED, which is the best reported high efficiency inkjet-printed red QLEDs to date. In addition, the inkjet-printed QLED achieved similar T75 operational lifetime (27 h) as compared to the spin-coated reference QLED (28 h) at 2, 000 cd·m−2. This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability.

Electronic Supplementary Material

Download File(s)
12274_2021_3352_MOESM1_ESM.pdf (3.2 MB)

References

1

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

2

Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

3

Bae, W. K.; Kwak, J.; Lim, J.; Lee, D.; Nam, M. K.; Char, K.; Lee, C.; Lee, S. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 2010, 10, 2368–2373.

4

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high- performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

5

Bae, W. K.; Lim, J.; Lee, D.; Park, M.; Lee, H.; Kwak, J.; Char, K.; Lee, C.; Lee, S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv. Mater. 2014, 26, 6387–6393.

6

Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

7

Kim, S.; Kim, J.; Kim, D.; Kim, B.; Chae, H.; Yi, H.; Hwang, B. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 26333–26338.

8

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light- emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

9

Cao, F.; Zhao, D. W.; Shen, P. Y.; Wu, J. L.; Wang, H. R.; Wu, Q. Q.; Wang, F. J.; Yang, X. Y. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Adv. Opt. Mater. 2018, 6, 1800652.

10

Shen, P. Y.; Cao, F.; Wang, H. R.; Wei, B.; Wang, F. J.; Sun, X. W.; Yang, X. Y. Solution-processed double-junction quantum-dot light-emitting diodes with an EQE of over 40%. ACS Appl. Mater. Interfaces 2019, 11, 1065–1070.

11

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light- emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

12

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. J.; Jia, Y. et al. Visible quantum dot light- emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

13

Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L. et al. High- performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345.

14

Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

15

Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light- emitting diode. Adv. Funct. Mater. 2017, 27, 1603325.

16

Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double- heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

17

Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light- emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

18

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

19

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

20

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

21

Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969–973.

22

Jiang, C. B.; Zhong, Z. M.; Liu, B. Q.; He, Z. W.; Zou, J. H.; Wang, L.; Wang, J.; Peng, J. B.; Cao, Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces 2016, 8, 26162–26168.

23

Liu, Y.; Li, F. S.; Xu, Z. W.; Zheng, C. X.; Guo, T. L; Xie, X. W; Qian, L.; Fu, D.; Yan, X. L. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces 2017, 9, 25506–25512.

24

Zhou, L.; Yang, L.; Yu, M. J.; Jiang, Y.; Liu, C. F.; Lai, W. Y.; Huang, W. Inkjet-printed small-molecule organic light-emitting diodes: Halogen-free inks, printing optimization, and large-area patterning. ACS Appl. Mater. Interfaces 2017, 9, 40533–40540.

25

Xie, L. M.; Xiong, X. Y.; Chang, Q. W.; Chen, X. L; Wei, C. T.; Li, X.; Zhang, M.; Su, W. M.; Cui, Z. Inkjet-printed high-efficiency multilayer QLEDs based on a novel crosslinkable small-molecule hole transport material. Small 2019, 15, 1900111.

26

Xiong, X. Y.; Wei, C. T; Xie, L. M.; Chen, M.; Tang, P. Y.; Shen, W.; Deng, Z. T.; Li, X.; Duan, Y. J.; Su, W. M. et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Org. Electron. 2019, 73, 247–254.

27

Xiang, C. Y.; Wu, L. J.; Lu, Z. Z; Li, M. L; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

28

Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High- resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

29

Li, D. Y.; Wang, J. J.; Li, M. Z.; Xie, G. C.; Guo, B.; Mu, L.; Li, H. Y.; Wang, J.; Yip, H. L.; Peng, J. B. Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 2020, 5, 2000099.

30

Gaworski, C. L.; Haun, C. C.; MacEwen, J. D.; Vernot, E. H.; Bruner, R. H.; Amster, R. L.; Cowan, M. J. Jr. A 90-day vapor inhalation toxicity study of decalin. Fundam. Appl. Toxicol. 1985, 5, 785–793.

31

Jang, D.; Kim, D.; Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir 2009, 25, 2629–2635.

32

Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094.

33

Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 2008, 18, 229–234.

34

Ding, Z. C.; Xing, R. B.; Fu, Q.; Ma, D. G.; Han, Y. C. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org. Electron. 2011, 12, 703–709.

35

Liu, H. M.; Xu, W.; Tan, W. Y.; Zhu, X. H.; Wang, J.; Peng, J. B.; Cao, Y. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 2016, 465, 106–111.

36

Ma, F.; Xu, K. W. Using dangling bond density to characterize the surface energy of nanomaterials. Surf. Interface Anal. 2007, 39, 611–614.

37

Yang, Z. Q.; Huck, W. T. S.; Clarke, S. M.; Tajbakhsh, A. R.; Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nat. Mater. 2005, 4, 486–490.

38

Han, Y. J.; An, K.; Kang, K. T.; Ju, B. K.; Cho, K. H. Optical and electrical analysis of annealing temperature of high-molecular weight hole transport layer for quantum-dot light-emitting diodes. Sci. Rep. 2019, 9, 10385.

Nano Research
Pages 4125-4131
Cite this article:
Chen M, Xie L, Wei C, et al. High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system. Nano Research, 2021, 14(11): 4125-4131. https://doi.org/10.1007/s12274-021-3352-9
Topics:

1064

Views

54

Crossref

47

Web of Science

52

Scopus

5

CSCD

Altmetrics

Received: 19 November 2020
Revised: 27 December 2020
Accepted: 19 January 2021
Published: 24 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return