Journal Home > Volume 14 , Issue 11

Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4: Yb, Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiband emission from single β-NaYF4(Yb, Er) nanoparticles at high excitation power densities and comparison to ensemble studies

Show Author's information Florian Frenzel1,4Christian Würth1Oleksii Dukhno2Frédéric Przybilla2Lisa M. Wiesholler3Verena Muhr3Thomas Hirsch3Yves Mély2Ute Resch-Genger1( )
Federal Institute for Materials Research and Testing (BAM) Division 1.2 Biophotonics, Richard-Willstaetter -Str. 11Berlin 12489 Germany
Laboratory of Biomaging and Pathologies UMR 7021 CNRS, University of StrasbourgStrasbourg 67000 France
Institute of Analytical Chemistry Chemo- and Biosensors, University of Regensburg93040 Regensburg Germany
Institut für Physik and IRIS Adlershof Humboldt-Universität zu Berlin, Newtonstraße 1512489 Berlin Germany

Abstract

Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4: Yb, Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels.

Keywords: upconversion luminescence, single nanoparticle study, high power excitation, emission color, luminescence decay kinetics

References(45)

1

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

2

Wu, X.; Chen, G. Y.; Shen, J.; Li, Z. J.; Zhang, Y. W.; Han, G. Upconversion nanoparticles: A versatile solution to multiscale biological imaging. Bioconjugate Chem. 2015, 26, 166–175.

3

Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663–697.

4

Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 2011, 23, 2675–2680.

5

Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.

6

Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide- doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.

7

Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.

8

Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.

9

Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M. R.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 2015, 5, 16533.

10

Pliss, A.; Ohulchanskyy, T. Y.; Chen, G. Y.; Damasco, J.; Bass, C. E.; Prasad, P. N. Subcellular optogenetics enacted by targeted nano­transformers of near-infrared light. ACS Photonics 2017, 4, 806–814.

11

Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle- mediated optogenetics. Science 2018, 359, 679–684.

12

Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 32–36.

13

Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

14

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

15

Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle- size-dependent upconversion luminescence of NaYF4: Yb, Er nano­particles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.

16

Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch- Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano-and micrometer-sized particles–measurements and simulations. Nanoscale 2017, 9, 10051–10058.

17

Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch- Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.

18

Wilhelm, S.; Kaiser, M.; Wurth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403–1410.

19

Wiesholler, L. M.; Hirsch, T. Strategies for the design of bright upconversion nanoparticles for bioanalytical applications. Opt. Mater. 2018, 80, 253–264.

20

Ohulchanskyy, T. Y.; Roy, I.; Yong, K. T.; Pudavar, H. E.; Prasad, P. N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 162–175.

21

Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.

22

Zhou, J. J.; Xu, S. Q.; Zhang, J. J.; Qiu, J. R. Upconversion luminescence behavior of single nanoparticles. Nanoscale 2015, 7, 15026–15036.

23

Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W cm-2 irradiance. Nat. Photonics 2018, 12, 548–553.

24

Yuan, M.; Wang, R.; Zhang, C.; Yang, Z.; Cui, W.; Yang, X.; Xiao, N.; Wang, H.; Xu, X. Exploiting the silent upconversion emissions from a single β-NaYF4: Yb/Er microcrystal via saturated excitation. J. Mater. Chem. C 2018, 6, 10226–10232.

25

Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch- Genger, U.; Hirsch, T. Particle-size-dependent forster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868–4874.

26

Dukhno, O.; Przybilla, F.; Muhr, V.; Buchner, M.; Hirsch, T.; Mély, Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale 2018, 10, 15904–15910.

27

Sardar, D. K.; Gruber, J. B.; Zandi, B.; Hutchinson, J. A.; Trussell, C. W. Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+, Yb3+. J. Appl. Phys. 2003, 93, 2041–2046.

28

Wegh, R. T.; Van Loef, E. V. D.; Burdick, G. W.; Meijerink, A. Luminescence spectroscopy of high-energy 4f11 levels of Er3+ in fluorides. Mol. Phys. 2003, 101, 1047–1056.

29

O'Shea, D. G.; Ward, J. M.; Shortt, B. J.; Mortier, M.; Féron, P.; Chormaic, S. N. Upconversion channels in Er3+: ZBLALiP fluoride glass microspheres. Eur. Phys. J. Appl. Phys. 2007, 40, 181–188.

30

Chen, X. Y.; Ma, E.; Liu, G. K. Energy levels and optical spectroscopy of Er3+ in Gd2O3 nanocrystals. J. Phys. Chem. C 2007, 111, 10404– 10411.

31

Cheng, Z. X.; Zhang, S. J.; Song, F.; Guo, H. C.; Han, J. R.; Chen, H. C. Optical spectroscopy of Yb/Er codoped NaY(WO4)2 crystal. J. Phys. Chem. Solids 2002, 63, 2011–2017.

32

Marciniak, L.; Waszniewska, K.; Bednarkiewicz, A.; Hreniak, D.; Strek, W. Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes. J. Phys. Chem. C 2016, 120, 8877–8882.

33

Lei, Y. Q.; Song, H. W.; Yang, L. M.; Yu, L. X.; Liu, Z. X.; Pan, G. H.; Bai, X.; Fan, L. B. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3: Er3, Yb3+ nanowires. J. Chem. Phys. 2005, 123, 174710.

34

Bhiri, N. M.; Dammak, M.; Aguiló, M.; Díaz, F.; Carvajal, J. J.; Pujol, M. C. Stokes and anti-Stokes operating conditions dependent luminescence thermometric performance of Er3+-doped and Er3+, Yb3+ co-doped GdVO4 microparticles in the non-saturation regime. J. Alloys Compd. 2020, 814, 152197.

35

Berry, M. T.; May, P. S. Disputed mechanism for nir-to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

36

Cho, Y.; Song, S. W.; Lim, S. Y.; Kim, J. H.; Park, C. R.; Kim, H. M. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4: Yb3+, Er3+ phosphors. Phys. Chem. Chem. Phys. 2017, 19, 7326–7332.

37

Kaiser, M.; Würth, C.; Kraft, M.; Soukka, T.; Resch-Genger, U. Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4: Yb3+, Er3+ nanoparticles: Measurements and simulations. Nano Res. 2019, 12, 1871–1879.

38

Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A. Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals. ACS Nano 2018, 12, 4812–4823.

39

Lyapin, A. A.; Gushchin, S. V.; Ermakov, A. S.; Kuznetsov, S. V.; Ryabochkina, P. A.; Proydakova, V. Y.; Voronov, V. V.; Fedorov, P. P.; Chernov, M. V. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors. Chin. Opt. Lett. 2018, 16, 091901.

40

Golesorkhi, B.; Fürstenberg, A.; Nozary, H.; Piguet, C. Deciphering and quantifying linear light upconversion in molecular erbium complexes. Chem. Sci. 2019, 10, 6876–6885.

41

Vetrone, F.; Naccache, R.; Zamarrón, A.; De La Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.

42

Bergstrand, J.; Liu, Q. Y.; Huang, B. R.; Peng, X. Y.; Würth, C.; Resch-Genger, U.; Zhan, Q. Q.; Widengren, J.; Ågren, H.; Liu, H. C. On the decay time of upconversion luminescence. Nanoscale 2019, 11, 4959–4969.

43

Wang, Z. J.; Meijerink, A. Concentration quenching in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306.

44

Tan, M. L.; Monks, M. J.; Huang, D. X.; Meng, Y. J.; Chen, X. W.; Zhou, Y.; Lim, S. F.; Würth, C.; Resch-Genger, U.; Chen, G. Y. Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale 2020, 12, 10592–10599.

45

Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.

File
12274_2021_3350_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 October 2020
Revised: 17 January 2021
Accepted: 20 January 2021
Published: 24 February 2021
Issue date: November 2021

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

The authors thank the European Upconversion Network (EUN) for financial support of a research exchange program (COST- CM1403). U. R.-G., F. F. and C. W. acknowledge financial support by research grants RE 1203/20-1 (project NANOHYPE; DFG and M-Eranet). Y. M. is grateful to the Institut Universitaire de France (IUF) for support and providing additional time to be dedicated to research.

Rights and permissions

Return