Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4: Yb, Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels.
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.
Wu, X.; Chen, G. Y.; Shen, J.; Li, Z. J.; Zhang, Y. W.; Han, G. Upconversion nanoparticles: A versatile solution to multiscale biological imaging. Bioconjugate Chem. 2015, 26, 166–175.
Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663–697.
Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 2011, 23, 2675–2680.
Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.
Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide- doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.
Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.
Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.
Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M. R.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 2015, 5, 16533.
Pliss, A.; Ohulchanskyy, T. Y.; Chen, G. Y.; Damasco, J.; Bass, C. E.; Prasad, P. N. Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 2017, 4, 806–814.
Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle- mediated optogenetics. Science 2018, 359, 679–684.
Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 32–36.
Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.
Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.
Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle- size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.
Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch- Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano-and micrometer-sized particles–measurements and simulations. Nanoscale 2017, 9, 10051–10058.
Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch- Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.
Wilhelm, S.; Kaiser, M.; Wurth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403–1410.
Wiesholler, L. M.; Hirsch, T. Strategies for the design of bright upconversion nanoparticles for bioanalytical applications. Opt. Mater. 2018, 80, 253–264.
Ohulchanskyy, T. Y.; Roy, I.; Yong, K. T.; Pudavar, H. E.; Prasad, P. N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 162–175.
Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.
Zhou, J. J.; Xu, S. Q.; Zhang, J. J.; Qiu, J. R. Upconversion luminescence behavior of single nanoparticles. Nanoscale 2015, 7, 15026–15036.
Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W cm-2 irradiance. Nat. Photonics 2018, 12, 548–553.
Yuan, M.; Wang, R.; Zhang, C.; Yang, Z.; Cui, W.; Yang, X.; Xiao, N.; Wang, H.; Xu, X. Exploiting the silent upconversion emissions from a single β-NaYF4: Yb/Er microcrystal via saturated excitation. J. Mater. Chem. C 2018, 6, 10226–10232.
Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch- Genger, U.; Hirsch, T. Particle-size-dependent forster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868–4874.
Dukhno, O.; Przybilla, F.; Muhr, V.; Buchner, M.; Hirsch, T.; Mély, Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale 2018, 10, 15904–15910.
Sardar, D. K.; Gruber, J. B.; Zandi, B.; Hutchinson, J. A.; Trussell, C. W. Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+, Yb3+. J. Appl. Phys. 2003, 93, 2041–2046.
Wegh, R. T.; Van Loef, E. V. D.; Burdick, G. W.; Meijerink, A. Luminescence spectroscopy of high-energy 4f11 levels of Er3+ in fluorides. Mol. Phys. 2003, 101, 1047–1056.
O'Shea, D. G.; Ward, J. M.; Shortt, B. J.; Mortier, M.; Féron, P.; Chormaic, S. N. Upconversion channels in Er3+: ZBLALiP fluoride glass microspheres. Eur. Phys. J. Appl. Phys. 2007, 40, 181–188.
Chen, X. Y.; Ma, E.; Liu, G. K. Energy levels and optical spectroscopy of Er3+ in Gd2O3 nanocrystals. J. Phys. Chem. C 2007, 111, 10404– 10411.
Cheng, Z. X.; Zhang, S. J.; Song, F.; Guo, H. C.; Han, J. R.; Chen, H. C. Optical spectroscopy of Yb/Er codoped NaY(WO4)2 crystal. J. Phys. Chem. Solids 2002, 63, 2011–2017.
Marciniak, L.; Waszniewska, K.; Bednarkiewicz, A.; Hreniak, D.; Strek, W. Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes. J. Phys. Chem. C 2016, 120, 8877–8882.
Lei, Y. Q.; Song, H. W.; Yang, L. M.; Yu, L. X.; Liu, Z. X.; Pan, G. H.; Bai, X.; Fan, L. B. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3: Er3, Yb3+ nanowires. J. Chem. Phys. 2005, 123, 174710.
Bhiri, N. M.; Dammak, M.; Aguiló, M.; Díaz, F.; Carvajal, J. J.; Pujol, M. C. Stokes and anti-Stokes operating conditions dependent luminescence thermometric performance of Er3+-doped and Er3+, Yb3+ co-doped GdVO4 microparticles in the non-saturation regime. J. Alloys Compd. 2020, 814, 152197.
Berry, M. T.; May, P. S. Disputed mechanism for nir-to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.
Cho, Y.; Song, S. W.; Lim, S. Y.; Kim, J. H.; Park, C. R.; Kim, H. M. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4: Yb3+, Er3+ phosphors. Phys. Chem. Chem. Phys. 2017, 19, 7326–7332.
Kaiser, M.; Würth, C.; Kraft, M.; Soukka, T.; Resch-Genger, U. Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4: Yb3+, Er3+ nanoparticles: Measurements and simulations. Nano Res. 2019, 12, 1871–1879.
Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A. Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals. ACS Nano 2018, 12, 4812–4823.
Lyapin, A. A.; Gushchin, S. V.; Ermakov, A. S.; Kuznetsov, S. V.; Ryabochkina, P. A.; Proydakova, V. Y.; Voronov, V. V.; Fedorov, P. P.; Chernov, M. V. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors. Chin. Opt. Lett. 2018, 16, 091901.
Golesorkhi, B.; Fürstenberg, A.; Nozary, H.; Piguet, C. Deciphering and quantifying linear light upconversion in molecular erbium complexes. Chem. Sci. 2019, 10, 6876–6885.
Vetrone, F.; Naccache, R.; Zamarrón, A.; De La Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.
Bergstrand, J.; Liu, Q. Y.; Huang, B. R.; Peng, X. Y.; Würth, C.; Resch-Genger, U.; Zhan, Q. Q.; Widengren, J.; Ågren, H.; Liu, H. C. On the decay time of upconversion luminescence. Nanoscale 2019, 11, 4959–4969.
Wang, Z. J.; Meijerink, A. Concentration quenching in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306.
Tan, M. L.; Monks, M. J.; Huang, D. X.; Meng, Y. J.; Chen, X. W.; Zhou, Y.; Lim, S. F.; Würth, C.; Resch-Genger, U.; Chen, G. Y. Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale 2020, 12, 10592–10599.
Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.
825
Views
20
Downloads
26
Crossref
24
Web of Science
26
Scopus
0
CSCD
Altmetrics