Journal Home > Volume 14 , Issue 11

Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O3 and P3 phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic conductivity of the Na0.9Ni0.3Co0.15Mn0.05Ti0.5O2 electrode, delivering the high initial Coulombic efficiency of 97.1%, large reversible capacity of 112.7 mAh∙g−1, superior rate capability upon 100 C and splendid cycling performance over 1, 000 cycles. Our findings open up new horizons for artificially manipulating the structural evolution and electrochemical process of layered cathodes, and pave a way in designing advanced sodium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries

Show Author's information Kezhu Jiang1Shaohua Guo1( )Wei Kong Pang2Xueping Zhang1Tiancheng Fang1Shao-fei Wang3,4Fangwei Wang5,6,7Xiaoyu Zhang8( )Ping He1Haoshen Zhou1,9( )
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Artificial Functional Materials, Nanjing UniversityNanjing 210093 China
Institute for Superconducting & Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong Wollongong, NSW 2522 Australia
China Spallatoin Neutron Source Institute of High Energy Physics, Chinese Academy of SciencesDongguan 523808 China
School of Nuclear Science and Technology University of Chinese Academy of SciencesBeijing 101408 China
Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of SciencesBeijing 100190 China
School of Physical Sciences University of Chinese Academy of SciencesBeijing 101408 China
Songshan Lake Materials LaboratoryDongguan 523808 China
School of materials science and engineering Jiangsu UniversityZhenjiang 212013 China
Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Umezono 1-1-1Tsukuba 305-8568 Japan

Abstract

Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O3 and P3 phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic conductivity of the Na0.9Ni0.3Co0.15Mn0.05Ti0.5O2 electrode, delivering the high initial Coulombic efficiency of 97.1%, large reversible capacity of 112.7 mAh∙g−1, superior rate capability upon 100 C and splendid cycling performance over 1, 000 cycles. Our findings open up new horizons for artificially manipulating the structural evolution and electrochemical process of layered cathodes, and pave a way in designing advanced sodium-ion batteries.

Keywords: oxygen vacancy, sodium-ion battery, layered oxide, O3 phase, reversible phase transition

References(47)

1

Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

2

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636– 11682.

3

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

4

Deng, J. Q.; Luo, W. B.; Chou, S. L.; Liu, H. K.; Dou, S. X. Sodium-ion batteries: From academic research to practical commercialization. Adv. Energy Mater. 2018, 8, 1701428.

5

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

6

Ortiz-Vitoriano, N.; Drewett, N. E.; Gonzalo, E.; Rojo, T. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 2017, 10, 1051–1074.

7

Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

8

Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

9

Rong, X. H.; Hu, E. Y.; Lu, Y. X.; Meng, F. Q.; Zhao, C. L.; Wang, X. L.; Zhang, Q. H.; Yu, X. Q.; Gu, L.; Hu, Y. S. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 2019, 3, 503–517.

10

Ren, W. H.; Zhu, Z. X.; An, Q. Y.; Mai, L. Q. Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 2017, 13, 1604181.

11

Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 2018, 8, 1701912.

12

Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.

13

Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv. Energy Mater. 2018, 8, 1703415.

14

Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 2, 825–840.

15

Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

16

Pang, W. K.; Kalluri, S.; Peterson, V. K.; Sharma, N.; Kimpton, J.; Johannessen, B.; Liu, H. K.; Dou, S. X.; Guo, Z. P. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem. Mater. 2015, 27, 3150–3158.

17

Sharma, N.; Gonzalo, E.; Pramudita, J. C.; Han, M. H.; Brand, H. E. A.; Hart, J. N.; Pang, W. K.; Guo, Z. P.; Rojo, T. The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: A sodium-centred perspective. Adv. Funct. Mater. 2015, 25, 4994–5005.

18

Guo, S. H.; Sun, Y.; Liu, P.; Yi, J.; He, P.; Zhang, X. Y.; Zhu, Y. B.; Senga, R.; Suenaga, K.; Chen, M. W. et al. Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Sci. Bull. 2018, 63, 376–384.

19

Xu, S. Y.; Wu, J. P.; Hu, E. Y.; Li, Q. H.; Zhang, J. N.; Wang, Y.; Stavitski, E.; Jiang, L. W.; Rong, X. H.; Yu, X. Q. et al. Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 20795–20803.

20

Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K. et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909–4918.

21

Song, J. H.; Wang, K.; Zheng, J. M.; Engelhard, M. H.; Xiao, B. W.; Hu, E. Y.; Zhu, Z. H.; Wang, C. M.; Sui, M. L.; Lin, Y. H. et al. Controlling surface phase transition and chemical reactivity of O3- layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 2020, 5, 1718–1725.

22

Xu, G. L.; Amine, R.; Xu, Y. F.; Liu, J. Z.; Gim, J.; Ma, T. Y.; Ren, Y.; Sun, C. J.; Liu, Y. Z.; Zhang, X. Y. et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1677–1693.

23

Wang, K.; Yan, P. F.; Sui, M. L. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 2018, 54, 148–155.

24

Fang, Y. J.; Chen, Z. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116.

25

Wang, Q. C.; Meng, J. K.; Yue, X. Y.; Qiu, Q. Q.; Song, Y.; Wu, X. J.; Fu, Z. W.; Xia, Y. Y.; Shadike, Z.; Wu, J. P. et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J. Am. Chem. Soc. 2019, 141, 840–848.

26

Bo, S. H.; Li, X.; Toumar, A. J.; Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 2016, 28, 1419–1429.

27

Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3 [Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225–A1229.

28

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

29

Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.

30

Chen, S. H.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019, 10, 788.

31

Plugaru, R.; Cremades, A.; Piqueras, J. The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J. Phys. –Condens. Matter 2003, 16, S261–S268.

32

Diebold, U.; Anderson, J. F.; Ng, K. O.; Vanderbilt, D. Evidence for the tunneling site on transition-metal oxides: TiO2 (110). Phys. Rev. Lett. 1996, 77, 1322–1325.

33

Epling, W. S.; Peden, C. H. F.; Henderson, M. A.; Diebold, U. Evidence for oxygen adatoms on TiO2 (110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 1998, 412413, 333–343.

34

Li, M.; Hebenstreit, W.; Diebold, U. Oxygen-induced restructuring of the rutile TiO2 (110)(1×1) surface. Surf. Sci. 1998, 414, L951–L956.

35

Gan, S.; Liang, Y.; Baer, D. R. Atomic control of TiO2 (110) surface by oxygen plasma treatment. Surf. Sci. 2000, 459, L498–L502.

36

Iijima, K.; Goto, M.; Enomoto, S.; Kunugita, H.; Ema, K.; Tsukamoto, M.; Ichikawa, N.; Sakama, H. Influence of oxygen vacancies on optical properties of anatase TiO2 thin films. J. Lumin. 2008, 128, 911–913.

37

Sekiya, T.; Ichimura, K.; Igarashi, M.; Kurita, S. Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere. J. Phys. Chem. Solids 2000, 61, 1237–1242.

38

Guo, S. H.; Li, Q.; Liu, P.; Chen, M. W.; Zhou, H. S. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 2017, 8, 135.

39

Qu, X. Y.; Yu, Z. L.; Ruan, D. S.; Dou, A. C.; Su, M. R.; Zhou, Y.; Liu, Y. J.; Chu, D. W. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain. Chem. Eng. 2020, 8, 5819–5830.

40

Yu, Z. L.; Qu, X. Y.; Dou, A. C.; Zhou, Y.; Su, M. R.; Liu, Y. J. Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceram. Int. 2021, 47, 1758–1765.

41

Zheng, S. Q.; Liu, D. M.; Tao, L.; Fan, X. J.; Liu, K.; Liang, G. J.; Dou, A. C.; Su, M. R.; Liu, Y. J.; Chu, D. W. Electrochemistry and redox characterization of rock-salt-type lithium metal oxides Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 for Li-ion batteries. J. Alloys Compd. 2019, 773, 1–10.

42

Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.

43

Guo, S. H.; Yu, H. J.; Liu, D. Q.; Tian, W.; Liu, X. Z.; Hanada, N.; Ishida, M.; Zhou, H. S. A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chem. Commun. 2014, 50, 7998– 8001.

44

Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.

45

Qi, X. G.; Wang, Y. S.; Jiang, L. W.; Mu, L. Q.; Zhao, C. L.; Liu, L. L.; Hu, Y. S.; Chen, L. Q.; Huang, X. J. Sodium-deficient O3- Na0.9Ni0.4MnxTi0.6–xO2 layered-oxide cathode materials for sodium-ion batteries. Part. Part. Syst. Char. 2016, 33, 538–544.

46

Sun, X.; Jin, Y.; Zhang, C. Y.; Wen, J. W.; Shao, Y.; Zang, Y.; Chen, C. H. NaNi0.4Fe0.2Mn0.4–xTixO2: A cathode of high capacity and superior cyclability for Na-ion batteries. J. Mater. Chem. A 2014, 2, 17268–17271.

47

Yue, J. L.; Zhou, Y. N.; Yu, X.; Bak, S. M.; Yang, X. Q.; Fu, Z. W. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries. J. Mater. Chem. A 2015, 3, 23261–23267.

File
12274_2021_3349_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2020
Revised: 13 January 2021
Accepted: 19 January 2021
Published: 10 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The financial is supported by the National Natural Science Foundation of China (Nos. 22075132, 51802149, and U1801251), the Fundamental Research Funds for the Central Universities, and Nanjing University Technology Innovation Fund Project. The authors are also grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this paper on its blade cluster system. W. K. P. is grateful to the financial support by the Australian Research Council through a Future Fellowship project (No. FT160100251). The operational support of ANSTO staffs, especially Dr. Vanessa Peterson and Dr. Christophe Didier, on the collection of neutron powder diffraction data of NaNCMT is highly appreciated. The neutron diffraction data were collected at ANSTO (Australia), CSNS (China), and NIST (USA).

Return