Journal Home > Volume 14 , Issue 6

There is an emerging need for high-sensitivity solar-blind deep ultraviolet (DUV) photodetectors with an ultra-fast response speed. Although nanoscale devices based on Ga2O3 nanostructures have been developed, their practical applications are greatly limited by their slow response speed as well as low specific detectivity. Here, the successful fabrication of two-/three-dimensional (2D/3D) graphene (Gr)/PtSe2/β-Ga2O3 Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated. Benefitting from the high-quality 2D/3D Schottky junction, the vertically stacked structure, and the superior-quality transparent graphene electrode for effective carrier collection, the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W, a large on/off current ratio of ~ 105, along with an ultra-high ultraviolet (UV)/visible rejection ratio of 1.8 × 104. More importantly, it has an ultra-fast response time of 12 μs and a remarkable specific detectivity of ~ 1013 Jones. Finally, an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga2O3 Schottky junction photodetector, demonstrating its great potential application in DUV imaging systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed

Show Author's information Di Wu1Zhihui Zhao1Wei Lu2Lukas Rogée2Longhui Zeng2( )Pei Lin1Zhifeng Shi1Yongtao Tian1Xinjian Li1Yuen Hong Tsang2( )
School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

There is an emerging need for high-sensitivity solar-blind deep ultraviolet (DUV) photodetectors with an ultra-fast response speed. Although nanoscale devices based on Ga2O3 nanostructures have been developed, their practical applications are greatly limited by their slow response speed as well as low specific detectivity. Here, the successful fabrication of two-/three-dimensional (2D/3D) graphene (Gr)/PtSe2/β-Ga2O3 Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated. Benefitting from the high-quality 2D/3D Schottky junction, the vertically stacked structure, and the superior-quality transparent graphene electrode for effective carrier collection, the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W, a large on/off current ratio of ~ 105, along with an ultra-high ultraviolet (UV)/visible rejection ratio of 1.8 × 104. More importantly, it has an ultra-fast response time of 12 μs and a remarkable specific detectivity of ~ 1013 Jones. Finally, an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga2O3 Schottky junction photodetector, demonstrating its great potential application in DUV imaging systems.

Keywords: photodetectors, β-Ga2O3, platinum diselenide, solar-blind, deep ultraviolet imaging

References(51)

[1]
J. Y. Tsao,; S. Chowdhury,; M. A. Hollis,; D. Jena,; N. M. Johnson,; K. A. Jones,; R. J. Kaplar,; S. Rajan,; C. G. Van de Walle,; E. Bellotti, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2018, 4, 1600501.
[2]
L. X. Su,; W. Yang,; J. Cai,; H. Y. Chen,; X. S. Fang, Self-powered ultraviolet photodetectors driven by built-in electric field. Small 2017, 13, 1701687.
[3]
H. Y. Chen,; H. Liu,; Z. M. Zhang,; K. Hu,; X. S. Fang, Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.
[4]
Y. C. Chen,; Y. J. Lu,; M. Y. Liao,; Y. Z. Tian,; Q. Liu,; C. J. Gao,; X. Yang,; C. X. Shan, 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater. 2019, 29, 1906040.
[5]
J. X. Chen,; W. X. Ouyang,; W. Yang,; J. H. He,; X. S. Fang, Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909.
[6]
C. N. Lin,; Y. J. Lu,; Y. Z. Tian,; C. J. Gao,; M. M. Fan,; X. Yang,; L. Dong,; C. X. Shan, Diamond based photodetectors for solar-blind communication. Opt. Express 2019, 27, 29962-29971.
[7]
W. Y. Kong,; G. A. Wu,; K. Y. Wang,; T. F. Zhang,; Y. F. Zou,; D. D. Wang,; L. B. Luo, Graphene-β-Ga2O3 Heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725-10731.
[8]
M. M. Fan,; K. W. Liu,; X. Chen,; Z. Z. Zhang,; B. H. Li,; D. Z. Shen, A self-powered solar-blind ultraviolet photodetector based on a Ag/ZnMgO/ZnO structure with fast response speed. RSC Adv. 2017, 7, 13092-13096.
[9]
K. Jiang,; X. J. Sun,; Z. H. Zhang,; J. W. Ben,; J. M. Che,; Z. M. Shi,; Y. P. Jia,; Y. Chen,; S. L. Zhang,; W. Lv, et al. Polarization-enhanced AlGaN solar-blind ultraviolet detectors. Photonics Res. 2020, 8, 1243-1252.
[10]
C. N. Lin,; Y. J. Lu,; X. Yang,; Y. Z. Tian,; C. J. Gao,; J. L. Sun,; L. Dong,; F. Zhong,; W. D. Hu,; C. X. Shan, Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018, 6, 1800068.
[11]
S. J. Pearton,; J. C. Yang,; P. H. Cary,; F. Ren,; J. Kim,; M. J. Tadjer,; M. A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301.
[12]
B. Zhao,; F. Wang,; H. Y. Chen,; L. X. Zheng,; L. X. Su,; D. X. Zhao,; X. S. Fang, An ultrahigh responsivity (9.7 mA W-1) self- powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.
[13]
B. Zhao,; F. Wang,; H. Y. Chen,; Y. P. Wang,; M. M. Jiang,; X. S. Fang,; D. X. Zhao, Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett. 2015, 15, 3988-3993.
[14]
C. Xie,; X. T. Lu,; M. R. Ma,; X. W. Tong,; Z. X. Zhang,; L. Wang,; C. Y. Wu,; W. H. Yang,; L. B. Luo, Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application. Adv. Opt. Mater. 2019, 7, 1901257.
[15]
Y. Qin,; S. B. Long,; Q. M. He,; H. Dong,; G. Z. Jian,; Y. Zhang,; X. H. Hou,; P. J. Tan,; Z. F. Zhang,; Y. J. Lu, et al. Amorphous gallium oxide-based gate-tunable high-performance thin film phototransistor for solar-blind imaging. Adv. Electron. Mater. 2019, 5, 1900389.
[16]
J. G. Yu,; L. P. Dong,; B. Peng,; L. Yuan,; Y. Huang,; L. C. Zhang,; Y. M. Zhang,; R. X. Jia, Self-powered photodetectors based on β-Ga2O3/4H-SiC heterojunction with ultrahigh current on/off ratio and fast response. J. Alloys Compd. 2020, 821, 153532.
[17]
P. G. Li,; H. Z. Shi,; K. Chen,; D. Y. Guo,; W. Cui,; Y. S. Zhi,; S. L. Wang,; Z. P. Wu,; Z. W. Chen,; W. H. Tang, Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector. J. Mater. Chem. C 2017, 5, 10562-10570.
[18]
R. C. Lin,; W. Zheng,; D. Zhang,; Z. J. Zhang,; Q. X. Liao,; L. Yang,; F. Huang, High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl. Mater. Interfaces 2018, 10, 22419-22426.
[19]
Z. G. Wang,; Q. Li,; F. Besenbacher,; M. D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 2016, 28, 10224-10229.
[20]
C. Yim,; K. Lee,; N. McEvoy,; M. O'Brien,; S. Riazimehr,; N. C. Berner,; C. P. Cullen,; J. Kotakoski,; J. C. Meyer,; M. C. Lemme, et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550-9558.
[21]
Z. X. Zhang,; L. H. Zeng,; X. W. Tong,; Y. Gao,; C. Xie,; Y. H. Tsang,; L. B. Luo,; Y. C. Wu, Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185-1194.
[22]
K. N. Zhang,; M. Z. Yan,; H. X. Zhang,; H. Q. Huang,; M. Arita,; Z. Sun,; W. H. Duan,; Y. Wu,; S. Y. Zhou, Experimental evidence for type-II dirac semimetal in PtSe2. Phys. Rev. B 2017, 96, 125102.
[23]
L. H. Zeng,; S. H. Lin,; Z. H. Lou,; H. Y. Yuan,; H. Long,; Y. Y. Li,; W. Lu,; S. P. Lau,; D. Wu,; Y. H. Tsang, Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352-362.
[24]
R. R. Zhuo,; L. H. Zeng,; H. Y. Yuan,; D. Wu,; Y. G. Wang,; Z. F. Shi,; T. T. Xu,; Y. T. Tian,; X. J. Li,; Y. H. Tsang, In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183-189.
[25]
D. Wu,; Y. G. Wang,; L. H. Zeng,; C. Jia,; E. P. Wu,; T. T. Xu,; Z. F. Shi,; Y. T. Tian,; X. J. Li,; Y. H. Tsang, Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820-3827.
[26]
L. H. Zeng,; S. H. Lin,; Z. J. Li,; Z. X. Zhang,; T. F. Zhang,; C. Xie,; C. H. Mak,; Y. Chai,; S. P. Lau,; L. B. Luo, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.
[27]
H. Xu,; C. Guo,; J. Z. Zhang,; W. L. Guo,; C. N. Kuo,; C. S. Lue,; W. D. Hu,; L. Wang,; G. Chen,; A. Politano, et al. PtTe2-based type-II dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection. Small 2019, 15, 1903362.
[28]
Z. J. Lu,; Y. Xu,; Y. Q. Yu,; K. W. Xu,; J. Mao,; G. B. Xu,; Y. M. Ma,; D. Wu,; J. S. Jie, Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.
[29]
R. R. Zhuo,; D. Wu,; Y. G. Wang,; E. P. Wu,; C. Jia,; Z. F. Shi,; T. T. Xu,; Y. T. Tian,; X. J. Li, A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982-10986.
[30]
D. Y. Guo,; H. Liu,; P. G. Li,; Z. P. Wu,; S. L. Wang,; C. Cui,; C. R. Li,; W. H. Tang, Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl. Mater. Interfaces 2017, 9, 1619-1628.
[31]
Z. P. Wu,; L. Jiao,; X. L. Wang,; D. Y. Guo,; W. H. Li,; L. H. Li,; F. Huang,; W. H. Tang, A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga: ZnO heterojunction. J. Mater. Chem. C 2017, 5, 8688-8693.
[32]
H. Liu,; J. H. Meng,; X. W. Zhang,; Y. N. Chen,; Z. G. Yin,; D. G. Wang,; Y. Wang,; J. B. You,; M. L. Gao,; P. Jin, High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 2018, 10, 5559-5565.
[33]
D. Wu,; J. W. Guo,; J. Du,; C. X. Xia,; L. H. Zeng,; Y. Z. Tian,; Z. F. Shi,; Y. T. Tian,; X. J. Li,; Y. H. Tsang, et al. Highly polarization- sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907-9917.
[34]
L. H. Zeng,; D. Wu,; S. H. Lin,; C. Xie,; H. Y. Yuan,; W. Lu,; S. P. Lau,; Y. Chai,; L. B. Luo,; Z. J. Li, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.
[35]
D. Y. Guo,; Y. L. Su,; H. Z. Shi,; P. G. Li,; N. Zhao,; J. H. Ye,; S. L. Wang,; A. P. Liu,; Z. W. Chen,; C. R. Li, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 2018, 12, 12827-12835.
[36]
Y. Lu,; J. Chen,; T. X. Chen,; Y. Shu,; R. J. Chang,; Y. W. Sheng,; V. Shautsova,; N. Mkhize,; P. Holdway,; H. Bhaskaran, et al. Controlling defects in continuous 2D GaS films for high-performance wavelength- tunable UV-discriminating photodetectors. Adv. Mater. 2020, 32, 1906958.
[37]
S. M. Yadav,; A. Pandey, Low cost 2D-SnS2 nanosheets based UV-A-visible band photodetector. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference, Penang, Malaysia, 2020.
[38]
Y. C. Chen,; Y. J. Lu,; C. N. Lin,; Y. Z. Tian,; C. J. Gao,; L. Dong,; C. X. Shan, Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C 2018, 6, 5727-5732.
[39]
D. Y. Guo,; Z. P. Wu,; Y. H. An,; X. C. Guo,; X. L. Chu,; C. L. Sun,; L. H. Li,; P. G. Li,; W. H. Tang, Oxygen vacancy tuned Ohmic- Schottky conversion for enhanced performance in β-Ga2O3 solar- blind ultraviolet photodetectors. Appl. Phys. Lett. 2014, 105, 023507.
[40]
Y. H. Lu,; Z. Q. Wu,; W. L. Xu,; S. S. Lin, ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity. Nanotechnology 2016, 27, 48LT03.
[41]
T. H. Flemban,; A. Haque,; I. Ajia,; N. Alwadai,; S. Mitra,; T. Wu,; I. S. Roqan, A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl. Mater. Interfaces 2017, 9, 37120-37127.
[42]
Y. C. Wang,; C. Wu,; D. Y. Guo,; P. G. Li,; S. L. Wang,; A. P. Liu,; C. R. Li,; F. M. Wu,; W. H. Tang, All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector. ACS Appl. Electron. Mater. 2020, 2, 2032-2038.
[43]
H. Y. Chen,; P. P. Yu,; Z. Z. Zhang,; F. Teng,; L. X. Zheng,; K. Hu,; X. S. Fang, Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809-5816.
[44]
J. G. Yu,; Z. Z. Nie,; L. P. Dong,; L. Yuan,; D. J. Li,; Y. Huang,; L. C. Zhang,; Y. M. Zhang,; R. X. Jia, Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetectors. J. Alloys Compd. 2019, 798, 458-466.
[45]
S. Li,; D. Y. Guo,; P. G. Li,; X. Wang,; Y. H. Wang,; Z. Y. Yan,; Z. Liu,; Y. Zhi,; Y. S. Huang,; Z. P. Wu, et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core-shell microwire heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 35105-35114.
[46]
N. Prakash,; M. Singh,; G. Kumar,; A. Barvat,; K. Anand,; P. Pal,; S. P. Singh,; S. P. Khanna, Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes. Appl. Phys. Lett. 2016, 109, 242102.
[47]
X. Zhou,; Q. Zhang,; L. Gan,; X. Li,; H. Q. Li,; Y. Zhang,; D. Golberg,; T. Y. Zhai, High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704-712.
[48]
Y. F. Wang,; L. Li,; H. B. Wang,; L. X. Su,; H. Y. Chen,; W. P. Bian,; J. G. Ma,; B. S. Li,; Z. G. Liu,; A. D. Shen, An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction. Nanoscale 2020, 12, 1406-1413.
[49]
H. B. Wang,; H. Y. Chen,; L. Li,; Y. F. Wang,; L. X. Su,; W. P. Bian,; B. S. Li,; X. S. Fang, High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT: PSS/β-Ga2O3 organic/inorganic p-n junction. J. Phys. Chem. Lett. 2019, 10, 6850-6856.
[50]
H. Kan,; W. Zheng,; R. C. Lin,; M. Li,; C. Fu,; H. B. Sun,; M. Dong,; C. H. Xu,; J. T. Luo,; Y. Q. Fu, et al. Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions. ACS Appl. Mater. Interfaces 2019, 11, 8412-8418.
[51]
Z. Y. Yan,; S. Li,; Z. Liu,; Y. S. Zhi,; J. Dai,; X. .Y Sun,; S. Y. Sun,; D. Y. Guo,; X. Wang,; P. G. Li, et al. High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p-n heterojunction. J. Mater. Chem. C 2020, 8, 4502-4509.
File
12274_2021_3346_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2020
Revised: 29 December 2020
Accepted: 19 January 2021
Published: 03 March 2021
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U2004165, 51702017, and 11974016), the Natural Science Foundation of Henan Province, China (No. 202300410376) and Research Grants Council of Hong Kong, China (No. GRF 152093/18E PolyU B-Q65N).

Return