Journal Home > Volume 14 , Issue 11

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.


menu
Abstract
Full text
Outline
About this article

Graphene transfer methods: A review

Show Author's information Sami Ullah1Xiaoqin Yang1,2Huy Q. Ta3Maria Hasan4,5Alicja Bachmatiuk1,3,5Klaudia Tokarska5Barbara Trzebicka5Lei Fu6Mark H. Rummeli1,3,5,7( )
College of Energy, Soochow Institute for Energy and Materials InnovationsKey Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
School of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
Institute for Complex MaterialsIFW Dresden, 20 Helmholtz StrasseDresden01069Germany
NUTECH, School of Applied Sciences & Humanities and Computer Engineering DepartmentNational University of TechnologyIslamabad42000Pakistan
Centre of Polymer and Carbon Materials, Polish Academy of SciencesM. Curie-Sklodowskiej 34, Zabrze41-819Poland
College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072China
Institute of Environmental TechnologyVŠB-Technical University of Ostrava, 17. listopadu 15Ostrava708 33Czech Republic

Abstract

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.

Keywords: high-quality transfer, application-compatible substrate, graphene technology

References(98)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

3

Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

4

Ma, L. P.; Ren, W. C.; Cheng, H. M. Transfer methods of graphene from metal substrates: A review. Small Methods 2019, 3, 1900049.

5

Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, e1803639.

6

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

7

Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82–92.

8

Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322.

9

Yang, X. J.; Yan, M. D. Removing contaminants from transferred CVD graphene. Nano Res. 2020, 13, 599–610.

10

Wang, H. P.; Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 2016, 28, 4956–4975.

11
Comanescu, F.; Istrate, A.; Purica, M. Raman investigation of critical steps in monolayer graphene transfer form copper substrate to oxidized silicon by means of electrochemical delamination. In Proceedings of 2018 International Semiconductor Conference, Sinaia, Roumania, 2018, pp 269–272.https://doi.org/10.1109/SMICND.2018.8539747
DOI
12

Comanescu, F.; Istrate, A.; Purica, M. Assessing by Raman spectroscopy the quality of CVD graphene transferred on oxidized silicon and quartz substrates. Rom. J. Inf. Sci. Tech. 2019, 22, 30–40.

13

Kostogrud, I. A.; Boyko, E. V.; Smovzh, D. V. The main sources of graphene damage at transfer from copper to PET/EVA polymer. Mater. Chem. Phys. 2018, 219, 67–73.

14

Amiri, M. H.; Heidler, J.; Hasnain, A.; Anwar, S.; Lu, H.; Müllen, K.; Asadi, K. Doping free transfer of graphene using aqueous ammonia flow. RSC Adv. 2020, 10, 1127–1131.

15

Lee, H. C.; Liu, W. W.; Chai, S. P.; Mohamed, A. R.; Aziz, A.; Khe, C. S.; Hidayah, N. M.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693.

16

Ambrosi, A.; Pumera, M. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 2014, 6, 472–476.

17

Leong, W. S.; Wang, H. Z.; Yeo, J. J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.

18

Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.

19

Kang, S.; Yoon, T.; Kim, S.; Kim, T. S. Role of crack deflection on rate dependent mechanical transfer of multilayer graphene and its application to transparent electrodes. ACS Appl. Nano Mater. 2019, 2, 1980–1985.

20

Chandrashekar, B. N.; Smitha, A. S.; Wu, Y. C.; Cai, N. D.; Li, Y. L.; Huang, Z. Y.; Wang, W. J.; Shi, R.; Wang, J. W.; Liu, S. Y. et al. A universal stamping method of graphene transfer for conducting flexible and transparent polymers. Sci. Rep. 2019, 9, 3999.

21

Cai, C. Y.; Jia, F. X.; Li, A. L.; Huang, F.; Xu, Z. H.; Qiu, L. Z.; Chen, Y. Q.; Fei, G. T.; Wang, M. Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon 2016, 98, 457–462.

22

Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

23

Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.

24

Kaur, G.; Kavitha, K.; Lahiri, I. Transfer-free graphene growth on dielectric substrates: A review of the growth mechanism. Crit. Rev. Solid State Mater. Sci. 2019, 44, 157–209.

25

Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927.

26

Tan, H.; Wang, D. G.; Guo, Y. B. Thermal growth of graphene: A review. Coatings 2018, 8, 40.

27

Chen, M. G.; Haddon, R. C.; Yan, R. X.; Bekyarova, E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017, 4, 1054–1063.

28

Ahn, Y.; Kim, H.; Kim, Y. H.; Yi, Y.; Kim, S. I. Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl. Phys. Lett. 2013, 102, 091602.

29

Zhao, P.; Kumamoto, A.; Kim, S.; Chen, X.; Hou, B.; Chiashi, S.; Einarsson, E.; Ikuhara, Y.; Maruyama, S. Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J. Phys. Chem. C 2013, 117, 10755–10763.

30

Qu, J. Y.; Li, B. W.; Shen, Y. T.; Huo, S. C.; Xu, Y.; Liu, S. Y.; Song, B. K.; Wang, H.; Hu, C. G.; Feng, W. Evaporable glass-state molecule-assisted transfer of clean and intact graphene onto arbitrary substrates. ACS Appl. Mater. Interfaces 2019, 11, 16272–16279.

31

Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.

32

Mafra, D. L.; Ming, T.; Kong, J. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 2015, 7, 14807–14812.

33

Takeya, K.; Ikegami, Y.; Matsumura, K.; Kawase, K.; Uchida, H. Optical evaluation of CYTOP, an amorphous fluoropolymer, in the terahertz frequency across a wide temperature range. Appl. Phys. Express 2019, 12, 042004.

34

Lee, W. H.; Suk, J. W.; Lee, J.; Hao, Y. F.; Park, J.; Yang, J. W.; Ha, H. W.; Murali, S.; Chou, H.; Akinwande, D. et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 2012, 6, 1284–1290.

35

Suk, J. W.; Lee, W. H.; Lee, J.; Chou, H.; Piner, R. D.; Hao, Y. F.; Akinwande, D.; Ruoff, R. S. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 2013, 13, 1462–1467.

36

Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. F. Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology 2015, 26, 055302.

37

Chen, M. G.; Stekovic, D.; Li, W. X.; Arkook, B.; Haddon, R. C.; Bekyarova, E. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology 2017, 28, 255701.

38

Wang, B.; Luo, D.; Li, Z. C.; Kwon, Y.; Wang, M. H.; Goo, M.; Jin, S.; Huang, M.; Shen, Y. T.; Shi, H. F. et al. Camphor-enabled transfer and mechanical testing of centimeter-scale ultrathin films. Adv. Mater. 2018, 30, 1800888.

39

De Castro, R. K.; Araujo, J. R.; Valaski, R.; Costa, L. O. O.; Archanjo, B. S.; Fragneaud, B.; Cremona, M.; Achete, C. A. New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 2015, 273, 509–518.

40

Park, H.; Park, I. J.; Jung, D. Y.; Lee, K. J.; Yang, S. Y.; Choi, S. Y. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors. 2D Mater. 2016, 3, 021003.

41

Jang, M.; Trung, T. Q.; Jung, J. H.; Kim, B. Y.; Lee, N. E. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer. Phys. Chem. Chem. Phys. 2014, 16, 4098–4105.

42

Zhang, G. H.; Guell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R. Versatile polymer-free graphene transfer method and applications. ACS Appl. Mater. Interfaces 2016, 8, 8008–8016.

43

Park, H.; Lim, C.; Lee, C. J.; Kang, J.; Kim, J.; Choi, M.; Park, H. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology 2018, 29, 415303.

44

Chandrashekar, B. N.; Cai, N.; Liu, L. W. Y.; Smitha, A. S.; Wu, Z. F.; Chen, P. C.; Shi, R.; Wang, W. J.; Wang, J. W.; Tang, C. M. et al. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. J. Colloid Interface Sci. 2019, 546, 11–19.

45

Qi, P. W.; Huang, Y. N.; Yao, Y. Z.; Li, Q.; Lian, Y. B.; Lin, L.; Wang, X. B.; Gu, Y. D.; Li, L. Q.; Deng, Z. et al. Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Appl. Surf. Sci. 2019, 493, 81–86.

46

Shahzad, K.; Jia, K. P.; Zhao, C.; Yan, X. Y.; Yadong, Z.; Usman, M.; Luo, J. An improved rosin transfer process for the reduction of residue particles for graphene. Nanoscale Res. Lett. 2020, 15, 85.

47

Zhang, X. W.; Xu, C.; Zou, Z. X.; Wu, Z. H.; Yin, S. Q.; Zhang, Z. L.; Liu, J. L.; Xia, Y.; Lin, C. T.; Zhao, P. et al. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon 2020, 161, 479–485.

48

Huet, B.; Raskin, J. P.; Snyder, D. W.; Redwing, J. M. Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon 2020, 163, 95–104.

49

Abdalrheem, R.; Yam, F. K.; Ibrahim, A. R.; Beh, K. P.; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Jafri, M. Z.; Oglat, A. A. Comparative studies on the transfer of chemical vapor deposition grown graphene using either electrochemical delamination or chemical etching method. J. Phys. Conf. Ser. 2018, 1083, 012038.

50

Yang, X. W.; Peng, H. L.; Xie, Q.; Zhou, Y.; Liu, Z. F. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J. Electroanal. Chem. 2013, 688, 243–248.

51

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

52

Shi, L. J.; Liu, Y. Q.; Yang, F.; Gao, L.; Sun, J. A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene. Nanotechnology 2014, 25, 145704.

53

Zhang, D. Y.; Jin, Z.; Shi, J. Y.; Wang, X. Y.; Peng, S. A.; Wang, S. Q. The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem. Commun. 2015, 51, 2987–2990.

54

Liu, L. H.; Shang, W. J.; Han, C.; Zhang, Q.; Yao, Y.; Ma, X. Q.; Wang, M. H.; Yu, H. T.; Duan, Y.; Sun, J. et al. Two-in-one method for graphene transfer: Simplified fabrication process for organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 7289–7295.

55

Lu, W. E.; Cheng, S.; Yan, M. J.; Wang, Y. W.; Xia, Y. Selective soluble polymer-assisted electrochemical delamination of chemical vapor deposition graphene. J. Solid State Electrochem. 2019, 23, 943–951.

56

Verguts, K.; Coroa, J.; Huyghebaert, C.; De Gendt, S.; Brems, S. Graphene delamination using "electrochemical methods": An ion intercalation effect. Nanoscale 2018, 10, 5515–5521.

57

Gorantla, S.; Bachmatiuk, A.; Hwang, J.; Alsalman, H. A.; Kwak, J. Y.; Seyller, T.; Eckert, J.; Spencer, M. G.; Rümmeli, M. H. A universal transfer route for graphene. Nanoscale 2014, 6, 889–896.

58

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

59

Moon, J. Y.; Kim, S. I.; Son, S. K.; Kang, S. G.; Lim, J. Y.; Lee, D. K.; Ahn, B.; Whang, D.; Yu, H. K.; Lee, J. H. An eco-friendly, CMOS-compatible transfer process for large-scale CVD-graphene. Adv. Mater. Interfaces 2019, 6, 1900084.

60

Shivayogimath, A.; Whelan, P. R.; Mackenzie, D. M. A.; Luo, B. R.; Huang, D. P.; Luo, D.; Wang, M. H.; Gammelgaard, L.; Shi, H. F.; Ruoff, R. S. et al. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 2019, 31, 2328–2336.

61

Marchena, M.; Wagner, F.; Arliguie, T.; Zhu, B.; Johnson, B.; Fernández, M.; Chen, T. L.; Chang, T.; Lee, R.; Pruneri, V. et al. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater. 2018, 5, 035022.

62

Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

63

Feng, Y.; Chen, K. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications. Nanotechnology 2015, 26, 035302.

64

Kim, J. W.; Woo, J. Y.; Jo, S.; Oh, J. H.; Hong, W.; Lee, B. C.; Jung, H. J.; Kim, J. H.; Roh, S. C.; Han, C. S. Clean and less defective transfer of monolayer graphene by floatation in hot water. Appl. Surf. Sci. 2020, 508, 145057.

65

Kim, H. H.; Chung, Y.; Lee, E.; Lee, S. K.; Cho, K. Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv. Mater. 2014, 26, 3213– 3217.

66

Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; De Oliveira, R. V. B.; Hu, X.; Yarovsky, I.; Neto, A. H. C.; Özyilmaz, B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224–231.

67

Kessler, F.; Muñoz, P. A. R.; Phelan, C.; Romani, E. C.; Larrudé, D. R. G.; Júnior, F. L. F.; De Souza, E. A. T.; De Matos, C. J. S.; Fechine, G. J. M. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Appl. Surf. Sci. 2018, 440, 55–60.

68

Xin, H.; Li, W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Appl. Phys. Rev. 2018, 5, 031105.

69

Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y. B.; Tan, C. W.; Zhang, H. X.; Peng, H. L.; Liu, Z. F. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216.

70
Kotsidi, M.; Gorgolis, G.; Galiotis, C. Roll-to-roll graphene transfer as an effective tool for the protection of artworks. In Abstracts from the 12th Panhellenic Scientific Conference on Chemical Engineering, University of Patras, Athens, Greece, May 29–31, 2019. https://12pesxm.chemeng.ntua.gr/abstracts/AC0234.pdf (accessed Oct 25, 2020).
71

Xin, H.; Zhao, Q. S.; Chen, D. M.; Li, W. Roll-to-roll mechanical peeling for dry transfer of chemical vapor deposition graphene. J. Micro Nano-Manuf. 2018, 6, 031004.

72

Hempel, M.; Lu, A. Y.; Hui, F.; Kpulun, T.; Lanza, M.; Harris, G.; Palacios, T.; Kong, J. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 2018, 10, 5522–5531.

73

Jang, B.; Kim, C. H.; Choi, S. T.; Kim, K. S.; Kim, K. S.; Lee, H. J.; Cho, S.; Ahn, J. H.; Kim, J. H. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Mater. 2017, 4, 024002.

74

Ma, L. P.; Dong, S. C.; Chen, M. L.; Ma, W.; Sun, D. M.; Gao, Y.; Ma, T.; Cheng, H. M.; Ren, W. C. UV-epoxy-enabled simultaneous intact transfer and highly efficient doping for roll-to-roll production of high-performance graphene films. ACS Appl. Mater. Interfaces 2018, 10, 40756–40763.

75

Ballesio, A.; Parmeggiani, M.; Verna, A.; Frascella, F.; Cocuzza, M.; Pirri, C. F.; Marasso, S. L. A novel hot embossing Graphene transfer process for flexible electronics. Microelectron. Eng. 2019, 209, 16–19.

76

Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C. et al. Clean-lifting transfer of large-area residual-free graphene films. Adv. Mater. 2013, 25, 4521–4526.

77

Jung, W.; Kim, D.; Lee, M.; Kim, S.; Kim, J. H.; Han, C. S. Ultraconformal contact transfer of monolayer graphene on metal to various substrates. Adv. Mater. 2014, 26, 6394–6400.

78

Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784–1791.

79
Quellmalz, A.; Wang, X. J.; Wagner, S.; Lemme, M.; Gylfason, K. B.; Roxhed, N.; Stemme, G.; Niklaus, F. Wafer-scale transfer of graphene by adhesive wafer bonding. In Proceedings of 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, Seoul, Republic of Korea, 2019; pp 257–259.https://doi.org/10.1109/MEMSYS.2019.8870682
DOI
80

Bautista-Flores, C.; Sato-Berrú, R. Y.; Mendoza, D. Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates. Mater. Res. Express 2018, 6, 015601.

81

Li, R. H.; Li, Z.; Pambou, E.; Gutfreund, P.; Waigh, T. A.; Webster, J. R. P.; Lu, J. R. Determination of PMMA residues on a chemical-vapor-deposited monolayer of graphene by neutron reflection and atomic force microscopy. Langmuir 2018, 34, 1827–1833.

82

Son, B. H.; Kim, H. S.; Jeong, H.; Park, J. Y.; Lee, S.; Ahn, Y. H. Electron beam induced removal of PMMA layer used for graphene transfer. Sci. Rep. 2017, 7, 18058.

83

Jia, Y. H.; Gong, X.; Peng, P.; Wang, Z. D.; Tian, Z. Z.; Ren, L. M.; Fu, Y. Y.; Zhang, H. Toward high carrier mobility and low contact resistance: Laser cleaning of PMMA residues on graphene surfaces. Nano-Micro Lett. 2016, 8, 336–346.

84

Pham, T. T.; Do, Q. H.; Ngo, T. K. V.; Sporken, R. Direct transfer of the CVD-grown graphene on copper foils on SiO2 substrate under supercritical CO2 assisted-cleaning technique. Mater Today Commun. 2019, 18, 184–190.

85
McHugh, M.; Krukonis, V. Supercritical Fluid Extraction: Principles and Practice, 2nd ed.; Elsevier Inc. : Amsterdam, 2013.
86

Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 14446–14451.

87

Song, I.; Park, Y.; Cho, H.; Choi, H. C. Transfer-free, large-scale growth of high-quality graphene on insulating substrate by physical contact of copper foil. Angew. Chem., Int. Ed. 2018, 57, 15374–15378.

88

Dong, Y. B.; Xie, Y. Y.; Xu, C.; Fu, Y. F.; Fan, X.; Li, X. J.; Wang, L.; Xiong, F. Z.; Guo, W. L.; Pan, G. Z. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst. Nanotechnology 2018, 29, 365301.

89

Guo, L. C.; Zhang, Z. Y.; Sun, H. Y.; Dai, D.; Cui, J. F.; Li, M. Z.; Xu, Y.; Xu, M. S.; Du, Y. F.; Jiang, N. et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon 2018, 129, 456–461.

90

Shin, B. G.; Boo, D. H.; Song, B.; Jeon, S.; Kim, M.; Park, S.; An, E. S.; Kim, J. S.; Song, Y. J.; Lee, Y. H. Single-crystalline monolayer graphene wafer on dielectric substrate of SiON without metal catalysts. ACS Nano 2019, 13, 6662–6669.

91

Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

92

Khan, A.; Islam, S. M.; Ahmed, S.; Kumar, R. R.; Habib, M. R.; Huang, K.; Hu, M.; Yu, X. G.; Yang, D. R. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050.

93

Qing, F. Z.; Zhang, Y. F.; Niu, Y. T.; Stehle, R.; Chen, Y. F.; Li, X. S. Towards large-scale graphene transfer. Nanoscale 2020, 12, 10890– 10911.

94

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

95

Mendes, R. G.; Pang, J. B.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z. F.; Ruum¨mmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 2019, 13, 978–995.

96

Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen Co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610–1615.

97

Leong, W. S.; Arrabito, G.; Prestopino, G. Artificial intelligence algorithm enabled industrial-scale graphene characterization. Crystals 2020, 10, 308.

98

Cha, S.; Cha, M.; Lee, S.; Kang, J. H.; Kim, C. Low-temperature, dry transfer-printing of a patterned graphene monolayer. Sci. Rep. 2015, 5, 17877.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 October 2020
Revised: 01 January 2021
Accepted: 20 January 2021
Published: 05 February 2021
Issue date: November 2021

Copyright

© The Author(s) 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52071225), the Czech Republic from ERDF "Institute of Environmental Technology – Excellent Research" (No. CZ.02.1.01/0.0/0.0/16_019/0000853). M. H. R. and L. F. thank the Sino-German Research Institute for support (project: GZ 1400). X. Q. Y. thanks Suzhou University. H. Q. T. thanks the Alexander Von Humboldt Foundation for support through a fellowship.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return