Journal Home > Volume 14 , Issue 11

Two-dimensional (2D) lead halide perovskites nanostructures have drawn great fundamental interest and displayed excellent properties for various optoelectronic applications. However, the toxicity of lead remains a concern for their large-scale utilizations. Bismuth halide double perovskites stand out as a class of promising candidates for lead-free halide perovskites. In this work, we demonstrate the first synthesis of lead-free 2D halide double perovskite nanosheets. The synthesized Cs2AgBiBr6 nanosheets exhibited thicknesses in the range of 3–5 nm and lateral dimensions of ~ 200 nm. The nanosheets showed a strong absorption peak centered at ~ 430 nm and the photoluminescence emission observed at ~ 630 nm. We also explored dimensionality control from zero-dimensional nanocubes to 2D nanosheets and investigated the preferential growth of Cs2AgBiBr6 over other related compounds such as Cs3Bi2Br9 and CsAgBr2. Our study reveals that Cs2AgBiBr6 nanosheets are interesting 2D material for potential optoelectronic applications and provides a guideline for the controllable synthesis of multi-component compounds with tunable morphology, dimensionality and phase.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets

Show Author's information Jianmei Huang1( )Shengwen Zou1Jia Lin2Zhiwei Liu1Mingjing Qi1( )
School of Energy and Power Engineering Beihang UniversityBeijing 100191 China
Department of Physics, Shanghai University of Electric PowerShanghai 200090 China

Abstract

Two-dimensional (2D) lead halide perovskites nanostructures have drawn great fundamental interest and displayed excellent properties for various optoelectronic applications. However, the toxicity of lead remains a concern for their large-scale utilizations. Bismuth halide double perovskites stand out as a class of promising candidates for lead-free halide perovskites. In this work, we demonstrate the first synthesis of lead-free 2D halide double perovskite nanosheets. The synthesized Cs2AgBiBr6 nanosheets exhibited thicknesses in the range of 3–5 nm and lateral dimensions of ~ 200 nm. The nanosheets showed a strong absorption peak centered at ~ 430 nm and the photoluminescence emission observed at ~ 630 nm. We also explored dimensionality control from zero-dimensional nanocubes to 2D nanosheets and investigated the preferential growth of Cs2AgBiBr6 over other related compounds such as Cs3Bi2Br9 and CsAgBr2. Our study reveals that Cs2AgBiBr6 nanosheets are interesting 2D material for potential optoelectronic applications and provides a guideline for the controllable synthesis of multi-component compounds with tunable morphology, dimensionality and phase.

Keywords: nanocrystals, inorganic halide perovskites, double perovskites, bismuth based, two-dimensional nanostructures

References(36)

1

Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

2

Qiu, L. B.; He, S. S.; Ono, L. K.; Liu, S. Z.; Qi, Y. B. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 2019, 4, 2147–2167.

3

Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

4

Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 2017, 11, 315–321.

5

Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Perovskites for next-generation optical sources. Chem. Rev. 2019, 119, 7444–7477.

6

Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

7

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

8

Zhang, Q.; Yin, Y. D. All-inorganic metal halide perovskite nanocrystals: Opportunities and challenges. ACS Cent. Sci. 2018, 4, 668–679.

9

Liang, J. H.; Chen, D.; Yao, X.; Zhang, K. X.; Qu, F. L.; Qin, L. S.; Huang, Y. X.; Li, J. H. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications. Small 2020, 16, 1903398.

10

Patrick, L. Lead toxicity, a review of the literature. Part Ⅰ: Exposure, evaluation, and treatment. Altern. Med. Rev. 2006, 11, 2–22.

11

Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

12

Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

13

Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

14

McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

15

Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single- crystal X-ray detectors with a low detection limit. Nat. Photon. 2017, 11, 726–732.

16

Huang, J. M.; Lai, M. L.; Lin, J.; Yang, P. D. Rich chemistry in inorganic halide perovskite nanostructures. Adv. Mater. 2018, 30, 1802856.

17

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

18

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

19

Wang, K. Y.; Xing, G. C.; Song, Q. H.; Xiao, S. M. Micro- and nanostructured lead halide perovskites: From materials to integrations and devices. Adv. Mater. 2020, 2000306.

20

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

21

Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

22

Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 2016, 10, 7830–7839.

23

Tyagi, P.; Arveson, S. M.; Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 2015, 6, 1911–1916.

24

Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

25

Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

26

Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver- bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

27

Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

28

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

29

Bass, K. K.; Estergreen, L.; Savory, C. N.; Buckeridge, J.; Scanlon, D. O.; Djurovich, P. I.; Bradforth, S. E.; Thompson, M. E.; Melot, B. C. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9. Inorg. Chem. 2017, 56, 42–45.

30

Connor, B. A.; Leppert, L.; Smith, M. D.; Neaton, J. B.; Karunadasa, H. I. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 2018, 140, 5235–5240.

31

Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, Status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

32

Steele, J. A.; Puech, P.; Keshavarz, M.; Yang, R. X.; Banerjee, S.; Debroye, E.; Kim, C. W.; Yuan, H. F.; Heo, N. H.; Vanacken, J. et al. Giant electron-phonon coupling and deep conduction band resonance in metal halide double perovskite. ACS Nano 2018, 12, 8081–8090.

33

Lv, C. F.; Yang, X. G.; Shi, Z. F.; Wang, L. R.; Sui, L. Z.; Li, Q. Y.; Qin, J. X.; Liu, K. K.; Zhang, Z. F.; Li, X. et al. Pressure-induced ultra-broad-band emission of a Cs2AgBiBr6 perovskite thin film. J. Phys. Chem. C 2020, 124, 1732–1738.

34

Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤ y ≤ 1) double perovskite nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 2278–2283.

35

Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

36

Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

File
12274_2021_3343_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2020
Revised: 18 January 2021
Accepted: 19 January 2021
Published: 11 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51901171 and 61875119), the Fundamental Research Funds for the Central Universities (No. 501LKQB2020104011), the program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Rising-Star Program (No. 19QA1404000), and Shanghai Talent Development Fund.

Return