Journal Home > Volume 14 , Issue 11

Ni/ZnO nano-sponges have been successfully synthesized through optimized annealing of Ni/Zn-based organic framework (Ni/Zn-MOF). The annealed MOF provides the stable carbon structure with 3D interconnection and prevents structural collapse during the charging and discharging process. The annealing causes the incorporation of intrinsic Ni3+ in the surface of NiO nanoparticles, providing more reaction active sites. The oxygen vacancies in ZnO and heterostructure interfaces between NiO and ZnO promote the charge transformation. Based on the aforementioned advantages, the Ni/ZnO nanocomposites exhibit excellent electrocatalytic performances for supercapacitors. The specific capacitance can reach to 807 F·g−1 at 1 A·g−1 in the studied electrodes. After 5, 000 cycles at 10 A·g−1, the cyclic stability remains excellent at 86% of the initial capacitance. Moreover, the as-prepared asymmetric supercapacitor exhibits a high energy density of 30.6 W·h·kg−1 at power density of 398 W·kg−1. This study is expected to provide new insights into exploring the potential mechanism of catalyst action.

File
12274_2021_3341_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 September 2020
Revised: 05 January 2021
Accepted: 18 January 2021
Published: 05 June 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11975043 and 11605007).

Return