Journal Home > Volume 14 , Issue 11

Ni/ZnO nano-sponges have been successfully synthesized through optimized annealing of Ni/Zn-based organic framework (Ni/Zn-MOF). The annealed MOF provides the stable carbon structure with 3D interconnection and prevents structural collapse during the charging and discharging process. The annealing causes the incorporation of intrinsic Ni3+ in the surface of NiO nanoparticles, providing more reaction active sites. The oxygen vacancies in ZnO and heterostructure interfaces between NiO and ZnO promote the charge transformation. Based on the aforementioned advantages, the Ni/ZnO nanocomposites exhibit excellent electrocatalytic performances for supercapacitors. The specific capacitance can reach to 807 F·g−1 at 1 A·g−1 in the studied electrodes. After 5, 000 cycles at 10 A·g−1, the cyclic stability remains excellent at 86% of the initial capacitance. Moreover, the as-prepared asymmetric supercapacitor exhibits a high energy density of 30.6 W·h·kg−1 at power density of 398 W·kg−1. This study is expected to provide new insights into exploring the potential mechanism of catalyst action.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors

Show Author's information Anchun TangChubin Wan( )Xiaoyu HuXin Ju( )
School of Mathematics and Physics University of Science and Technology BeijingBeijing 100083 China

Abstract

Ni/ZnO nano-sponges have been successfully synthesized through optimized annealing of Ni/Zn-based organic framework (Ni/Zn-MOF). The annealed MOF provides the stable carbon structure with 3D interconnection and prevents structural collapse during the charging and discharging process. The annealing causes the incorporation of intrinsic Ni3+ in the surface of NiO nanoparticles, providing more reaction active sites. The oxygen vacancies in ZnO and heterostructure interfaces between NiO and ZnO promote the charge transformation. Based on the aforementioned advantages, the Ni/ZnO nanocomposites exhibit excellent electrocatalytic performances for supercapacitors. The specific capacitance can reach to 807 F·g−1 at 1 A·g−1 in the studied electrodes. After 5, 000 cycles at 10 A·g−1, the cyclic stability remains excellent at 86% of the initial capacitance. Moreover, the as-prepared asymmetric supercapacitor exhibits a high energy density of 30.6 W·h·kg−1 at power density of 398 W·kg−1. This study is expected to provide new insights into exploring the potential mechanism of catalyst action.

Keywords: metal-organic frameworks, electrochemical performance, supercapacitor, ZnO-based nano-sponges, surface vacancies

References(68)

1

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

2

Wang, J. S.; Zhang, X.; Li, Z.; Ma, Y. Q.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794.

3

Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946.

4

Chen, T.; Li, M.; Song, S.; Kim, P.; Bae, J. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 2020, 71, 104549.

5

Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

6

Tong, L.; Jiang, C.; Cai, K. F.; Wei, P. High-performance and freestanding PPy/Ti3C2Tx composite film for flexible all-solid-state supercapacitors. J. Power Sources 2020, 465, 228267.

7

Li, M. P.; El-Kady, M. F.; Hwang, J. Y.; Kowal, M. D.; Marsh, K.; Wang, H. S.; Zhao, Z. J.; Kaner, R. B. Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 2018, 11, 2836–2846.

8

Chen, Y. Z.; Zhou, T. F.; Li, L.; Pang, W. K.; He, X. M.; Liu, Y. N.; Guo, Z. P. Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 2019, 13, 9376–9385.

9

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

10

Selvakumar, M.; Bhat, D. K.; Aggarwal, A. M.; Iyer, S. P.; Sravani, G. Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys. B: Condens Matter 2010, 405, 2286–2289.

11

Ouyang, Y.; Xia, X. F.; Ye, H. T.; Wang, L.; Jiao, X. Y.; Lei, W.; Hao, Q. L. Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 2018, 10, 3549–3561.

12

He, X. L.; Yoo, J. E.; Lee, M. H.; Bae, J. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology 2017, 28, 245402.

13

Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2018, 12, 525–529.

14

Fang, L. X.; Zhang, B. L.; Li, W.; Zhang, J. Z.; Huang, K. J.; Zhang, Q. Y. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim. Acta 2014, 148, 164–169.

15

Lu, Z. Y.; Chang, Z.; Liu, J. F.; Sun, X. M. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658.

16

Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

17

Meng, G.; Yang, Q.; Wu, X. C.; Wan, P. B.; Li, Y. P.; Lei, X. D.; Sun, X. M.; Liu, J. F. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 2016, 30, 831–839.

18

Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88.

19

Gao, P.; Chen, Z.; Gong, Y. X.; Zhang, R.; Liu, H.; Tang, P.; Chen, X. H.; Passerini, S.; Liu, J. L. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: Synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 2020, 10, 1903780.

20

Wang, J.; Chen, R. S.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377.

21

Bi, W. C.; Wu, Y. J.; Liu, C. F.; Wang, J. C.; Du, Y. C.; Gao, G. H.; Wu, G. M.; Cao, G. Z. Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677.

22

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2020, 14, 754–761.

23

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

24

Salunkhe, R. R.; Kaneti, Y. V.; Yamauchi, Y. Metal-organic framework- derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano 2017, 11, 5293–5308.

25

Cruz-Navarro, J. A.; Hernandez-Garcia, F.; Romero, G. A. A. Novel applications of metal-organic frameworks (MOFs) as redox- active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev. 2020, 412, 213263.

26

Liu, S. T.; Zhou, J. S.; Song, H. H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 2018, 8, 1800569.

27

Hendon, C. H.; Rieth, A. J.; Korzyński, M. D.; Dincă, M. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent. Sci. 2017, 3, 554–563.

28

Jiao, Y.; Hong, W. Z.; Li, P. Y.; Wang, L. X.; Chen, G. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl. Catal. B Environ. 2019, 244, 732–739.

29

Dillip, G. R.; Banerjee, A. N.; Anitha, V. C.; Raju, B. D. P.; Joo, S. W.; Min, B. K. Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 2016, 8, 5025–5039.

30

Katea, S. N.; Hajduk, Š.; Orel, Z. C.; Westin, G. Low cost, fast solution synthesis of 3D framework ZnO nanosponges. Inorg. Chem. 2017, 56, 15150–15158.

31

Anžlovar, A.; Kogej, K.; Orel, Z. C.; Žigon, M. Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology. Cryst. Growth Des. 2014, 14, 4262–4269.

32

Shingange, K.; Swart, H. C.; Mhlongo, G. H. H2S detection capabilities with fibrous-like La-doped ZnO nanostructures: A comparative study on the combined effects of La-doping and post-annealing. J. Alloys Compd. 2019, 797, 284–301.

33

Chan, Y. C.; Yu, J.; Ho, D. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt–ZnO nanograin Schottky barrier interfaces. Appl. Surf. Sci. 2018, 443, 506–514.

34

Namoune, A.; Touam, T.; Chelouche, A. Thickness, annealing and substrate effects on structural, morphological, optical and waveguiding properties of RF sputtered ZnO thin films. J. Mater. Sci.: Mater. Electron. 2017, 28, 12207–12219.

35

Naeem, F.; Naeem, S.; Zhao, Z.; Shu, G. Q.; Zhang, J.; Mei, Y. F.; Huang, G. S. Atomic layer deposition synthesized ZnO nanomembranes: A facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 2020, 451, 227740.

36

Guerra, A.; Achour, A.; Vizireanu, S.; Dinescu, G.; Messaci, S.; Hadjersi, T.; Boukherroub, R.; Coffinier, Y.; Pireaux, J. J. ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors. Appl. Surf. Sci. 2019, 481, 926–932.

37

Reddy, I. N.; Reddy, C. V.; Sreedhar, A.; Shim, J.; Cho, M.; Yoo, K.; Kim, D. Structural, optical, and bifunctional applications: Supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J. Electroanal. Chem. 2018, 828, 124–136.

38

Jaramillo, A. F.; Baez-Cruz, R.; Montoya, L. F.; Medinam, C.; Pérez-Tijerina, E.; Salazar, F.; Rojas, D.; Melendrez, M. F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847.

39

Chen, S. J.; Liu, Y. C.; Shao, C. L.; Mu, R.; Lu, Y. M.; Zhang, J. Y.; Shen, D. Z.; Fan, X. W. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 2005, 17, 586–590.

40

Serrano, J.; Romero, A. H.; Manjón, F. J.; Lauck, R.; Cardona, M.; Rubio, A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B 2004, 69, 094306.

41

Xu, J.; Li, M.; Yang, L. Y.; Qiu, J. H.; Chen, Q.; Zhang, X. F.; Feng, Y.; Yao, J. F. Synergy of Ni dopant and oxygen vacancies in ZnO for efficient photocatalytic depolymerization of sodium lignosulfonate. Chem. Eng. J. 2020, 394, 125050.

42

Wang, Y. Y.; Xiao, X.; Li, Q.; Pang, H. Synthesis and progress of new oxygen-vacant electrode materials for high-energy rechargeable battery applications. Small 2018, 14, 1802193.

43

Zhou, D. J.; Xiong, X. Y.; Cai, Z.; Han, N. N.; Jia, Y.; Xie, Q. X.; Duan, X. X.; Xie, T. H.; Zheng, X. L.; Sun, X. M. et al. Flame- engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018, 2, 1800083.

44

Zannotti, M.; Benazzi, E.; Stevens, L. A.; Minicucci, M.; Bruce, L.; Snape, C. E.; Gibson, E. A.; Giovannetti, R. Reduced graphene oxide-NiO photocathodes for p-type dye-sensitized solar cells. ACS Appl. Energy Mater. 2019, 2, 7345–7353.

45

Duan, W. J.; Lu, S. H.; Wu, Z. L.; Wang, Y. S. Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 2012, 116, 26043–26051.

46

Sunny, A.; Balasubramanian, K. Raman spectral probe on size- dependent surface optical phonon modes and magnon properties of NiO nanoparticles. J. Phys. Chem. C 2020, 124, 12636–12644.

47

Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H. R.; Hofmann, D. M. et al. Nitrogen-related local vibrational modes in ZnO: N. Appl. Phys. Lett. 2002, 80, 1909–1911.

48

Dong, J. J.; Zhang, X. W.; You, J. B.; Cai, P. F.; Yin, Z. G.; An, Q.; Ma, X. B.; Jin, P.; Wang, Z. G.; Chu, P. K. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: Identification of hydrogen donors in ZnO. ACS Appl. Mater. Interfaces 2010, 2, 1780–1784.

49

Rana, A. K.; Kumar, Y.; Rajput, P.; Jha, S. N.; Bhattacharyya, D.; Shirage, P. M. Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure. ACS Appl. Mater. Interfaces 2017, 9, 7691–7700.

50

Manjón, F. J.; Marí, B.; Serrano, J.; Romero, A. H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516.

51

He, J. J.; Zhang, D. Y.; Wang, Y. L.; Zhang, J. W.; Yang, B. B.; Shi, H.; Wang, K. J.; Wang, Y. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability. Appl. Surf. Sci. 2020, 515, 146020.

52

Fu, F. B.; Yang, D. J.; Wang, H.; Qian, Y.; Yuan, F.; Zhong, J. Q.; Qiu, X. Q. Three-dimensional porous framework lignin-derived carbon/ZnO composite fabricated by a facile electrostatic self-assembly showing good stability for high-performance supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 16419–16427.

53

Obradovic, N.; Stevanovic, S.; Zeljkovic, V.; Ristic, M. M. Influence of ZnO specific surface area on its sintering kinetics. Powder Metall. Met. Ceram. 2009, 48, 182–185.

54

Park, K.; Zhang, Q. F.; Garcia, B. B.; Cao, G. Z. Effect of annealing temperature on TiO2−ZnO core−shell aggregate photoelectrodes of dye-sensitized solar cells. J. Phys. Chem. C 2011, 115, 4927–4934.

55

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

56

Wang, J. S.; Jin, H. H.; Wang, W. H.; Zhao, Y. H.; Li, Y.; Bao, M. Ultrasmall Ni-ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid. ACS Appl. Mater. Interfaces 2020, 12, 19581–19586.

57

Arunpandiyan, S.; Bharathi, S.; Pandikumar, A.; Arasi, S. E.; Arivarasan, A. Structural analysis and redox additive electrolyte based supercapacitor performance of ZnO/CeO2 nanocomposite. Mater. Sci. Semicond. Process. 2020, 106, 104765.

58

Li, Y.; Wei, Q. L.; Wang, R.; Zhao, J. K.; Quan, Z. L.; Zhan, T. R.; Li, D. X.; Xu, J.; Teng, H. N.; Hou, W. G. 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. J. Colloid Interface Sci. 2020, 570, 286–299.

59

Mahajan, H.; Bae, J.; Yun, K. Facile synthesis of ZnO-Au nanocomposites for high-performance supercapacitors. J. Alloys Compd. 2018, 758, 131–139.

60

Yang, P.; Song, X. L.; Jia, C. C.; Chen, H. S. Metal-organic framework-derived hierarchical ZnO/NiO composites: Morphology, microstructure and electrochemical performance. J. Ind. Eng. Chem. 2018, 62, 250–257.

61

Wu, G. Y.; Song, Y.; Wan, J. F.; Zhang, C. W.; Yin, F. X. Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloys Compd. 2019, 806, 464–470.

62

Samuel, E.; Joshi, B.; Kim, Y. I.; Aldalbahi, A.; Rahaman, M.; Yoon, S. S. ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustainable Chem. Eng. 2020, 8, 3697–3708.

63

Di, S.; Gong, L. G.; Zhou, B. B. Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater. Chem. Phys. 2020, 253, 123289.

64

Liu, J.; Xu, T.; Sun, X. W.; Bai, J.; Li, C. P. Preparation of stable composite porous nanofibers carried SnOx-ZnO as a flexible supercapacitor material with excellent electrochemical and cycling performance. J. Alloys Compd. 2019, 807, 151652.

65

Mao, X. Q.; Wang, W. Z.; Wang, Z. H. Hydrothermal synthesis of ZnxNi1−xS nanosheets for hybrid supercapacitor applications. ChemPlusChem 2017, 82, 1145–1152.

66

Sasirekha, C.; Arumugam, S.; Muralidharan, G. Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 2018, 449, 521–527.

67

Shang, Y. Y.; Xie, T.; Ma, C. L.; Su, L. H.; Gai, Y. S.; Liu, J.; Gong, L. Y. Synthesis of hollow ZnCo2O4 microspheres with enhanced electrochemical performance for asymmetric supercapacitor. Electrochim. Acta 2018, 286, 103–113.

68

Pang, H.; Ma, Y. H.; Li, G. C.; Chen, J.; Zhang, J. S.; Zheng, H. H.; Du, W. M. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans. 2012, 41, 13284–13291.

File
12274_2021_3341_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 September 2020
Revised: 05 January 2021
Accepted: 18 January 2021
Published: 05 June 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11975043 and 11605007).

Return