Journal Home > Volume 14 , Issue 11

Radiotherapy (RT) based on X-ray irradiation is a widely applied cancer treatment strategy in the clinic. However, treating cancer based on RT alone usually results in insufficient radiation energy deposition, which inevitably has serious side effects on healthy parts of the body. Interestingly, high atomic number (high-Z) metal nanocrystals as X-ray sensitizers can reduce the radiation dose effectively due to their high X-ray absorption, which has attracted increased attention in recent years. High-Z metal nanocrystals produce Auger and photoelectrons electrons under X-ray irradiation, which could generate large amounts of reactive oxygen species, and induce cellular damages. The sensitization effect of high-Z metal nanocrystals is closely related with their composition, morphologies, and size, which would strongly impact their performances in the application of cancer imaging and therapy. In this review, we summarize diverse types of X-ray sensitizers such as bismuth, hafnium, gold, and gadolinium for cancer RT and imaging applications. In addition, current challenges and the outlook of RT based on high-Z metal nanocrystals are also discussed.


menu
Abstract
Full text
Outline
About this article

X-ray sensitive high-Z metal nanocrystals for cancer imaging and therapy

Show Author's information Liting Zheng§Rong Zhu§Lanlan Chen( )Qinrui FuJingying LiChen ChenJibin Song( )Huanghao Yang( )
MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of Chemistry, Fuzhou UniversityFuzhou350116China

§Liting Zheng and Rong Zhu contributed equally to this work.

Abstract

Radiotherapy (RT) based on X-ray irradiation is a widely applied cancer treatment strategy in the clinic. However, treating cancer based on RT alone usually results in insufficient radiation energy deposition, which inevitably has serious side effects on healthy parts of the body. Interestingly, high atomic number (high-Z) metal nanocrystals as X-ray sensitizers can reduce the radiation dose effectively due to their high X-ray absorption, which has attracted increased attention in recent years. High-Z metal nanocrystals produce Auger and photoelectrons electrons under X-ray irradiation, which could generate large amounts of reactive oxygen species, and induce cellular damages. The sensitization effect of high-Z metal nanocrystals is closely related with their composition, morphologies, and size, which would strongly impact their performances in the application of cancer imaging and therapy. In this review, we summarize diverse types of X-ray sensitizers such as bismuth, hafnium, gold, and gadolinium for cancer RT and imaging applications. In addition, current challenges and the outlook of RT based on high-Z metal nanocrystals are also discussed.

Keywords: therapy, cancer, X-ray, radiotherapy, high-Z metal nanocrystal

References(147)

1

Polgár, C.; Ott, O. J.; Hildebrandt, G.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J.; Guinot, J. L.; Dunst, J.; Miguelez, C. G. et al. Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 259–268.

2

Barton, M. B.; Jacob, S.; Shafiq, J.; Wong, K.; Thompson, S. R.; Hanna, T. P.; Delaney, G. P. Estimating the demand for radiotherapy from the evidence: A review of changes from 2003 to 2012. Radiother. Oncol. 2014, 112, 140–144.

3

Baumann, M.; Krause, M.; Overgaard, J.; Debus, J.; Bentzen, S. M.; Daartz, J.; Richter, C.; Zips, D.; Bortfeld, T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 2016, 16, 234–249.

4

Benderitter, M.; Caviggioli, F.; Chapel, A.; Coppes, R. P.; Guha, C.; Klinger, M.; Malard, O.; Stewart, F.; Tamarat, R.; Van Luijk, P. et al. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid. Redox Signal. 2014, 21, 338–355.

5

Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447.

6

Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 2017, 117, 6160–6224.

7

Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.

8

Gaikwad, H. K.; Tsvirkun, D.; Ben-Nun, Y.; Merquiol, E.; Popovtzer, R.; Blum, G. Molecular imaging of cancer using X-ray computed tomography with protease targeted iodinated activity-based probes. Nano Lett. 2018, 18, 1582–1591.

9

Tsvirkun, D.; Ben-Nun, Y.; Merquiol, E.; Zlotver, I.; Meir, K.; Weiss-Sadan, T.; Matok, I.; Popovtzer, R.; Blum, G. CT imaging of enzymatic activity in cancer using covalent probes reveal a size-dependent pattern. J. Am. Chem. Soc. 2018, 140, 12010–12020.

10

Shen, S. D.; Chao, Y.; Dong, Z. L.; Wang, G. L.; Yi, X.; Song, G. S.; Yang, K.; Liu, Z.; Cheng, L. Bottom-up preparation of uniform ultrathin rhenium disulfide nanosheets for image-guided photothermal radiotherapy. Adv. Funct. Mater. 2017, 27, 1700250.

11

Ding, H.; Yong, K. T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C 2007, 111, 12552–12557.

12

Hu, X. G.; Gao, X. H. Multilayer coating of goldnanorods for combined stability and biocompatibility. Phys. Chem. Chem. Phys. 2011, 13, 10028–10035.

13

Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z. T.; Zhou, Y. L.; Qu, H. B.; Gao, Y.; Che, S. A.; Tang, Z. Y. Gold nanorod@chiral mesoporous silica core–shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 2013, 135, 9659–9664.

14

Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug. Deliv. 2012, 2012, 751075.

15

Cao-Milán, R.; Liz-Marzán, L. M. Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opin. Drug Deliv. 2014, 11, 741–752.

16

Kyriakou, Y.; Riedel, T.; Kalender, W. A. Combining deterministic and monte carlo calculations for fast estimation of scatter intensities in CT. Phys. Med. Biol. 2006, 51, 4567.

17

Lusic, H.; Grinstaff, M. W. X-ray computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666.

18

Kinsella, J. M.; Jimenez, R. E.; Karmali, P. P.; Rush, A. M.; Kotamraju, V. R.; Gianneschi, N. C.; Ruoslahti, E.; Stupack, D.; Sailor, M. J. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. , Int. Ed. 2011, 50, 12308–12311.

19
Wei, B. X.; Zhang, X. J.; Zhang, C.; Jiang, Y.; Fu, Y. Y.; Yu, C. S.; Sun, S. K.; Yan, X. P. Facile synthesis of uniform-sized bismuth nanoparticles for CT visualization of gastrointestinal tract in vivo. Acs Appl. Mater. Interfaces 2016, 8, 12720–12726.https://doi.org/10.1021/acsami.6b03640
DOI
20

Matsudaira, H.; Ueno, A. M.; Furuno, I. Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γ rays. Radiat. Res. 1980, 84, 144–148.

21

Iwamoto, K. S.; Cochran, S. T.; Winter, J.; Holburt, E.; Higashida, R. T.; Norman, A. Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors. Radiother. Oncol. 1987, 8, 161–170.

22

Brun, E.; Sicard-Roselli, C. Actual questions raised by nanoparticle radiosensitization. Radiat. Phys. Chem. 2016, 128, 134–142.

23

Butterworth, K. T.; McMahon, S. J.; Currell, F. J.; Prise, K. M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012, 4, 4830–4838.

24

Cormode, D. P.; Naha, P. C.; Fayad, Z. A. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol. Imaging 2014, 9, 37–52.

25

Jakhmola, A.; Anton, N.; Vandamme, T. F. Inorganic nanoparticles based contrast agents for x-ray computed tomography. Adv. Healthc. Mater. 2012, 1, 413–431.

26

Herold, D. M.; Das, I. J.; Stobbe, C. C.; Iyer, R. V.; Chapman, J. D. Gold microspheres: A selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 2000, 76, 1357– 1364.

27

Idé, J. M.; Lancelot, E.; Pines, E.; Corot, C. Prophylaxis of iodinated contrast media-induced nephropathy: A pharmacological point of view. Invest. Radiol. 2004, 39, 155–170.

28

Hainfeld, J. F.; Slatkin, D. N.; Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004, 49, N309–N315.

29

Joh, D. Y.; Sun, L.; Stangl, M.; Al Zaki, A.; Murty, S.; Santoiemma, P. P.; Davis, J. J.; Baumann, B. C.; Alonso-Basanta, M.; Bhang, D. et al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 2013, 8, e62425.

30

Tao, Y.; Li, M. Q.; Liu, X. Y.; Leong, K. W.; Gautier, J.; Zha, S. Dual-color plasmonic nanosensor for radiation dosimetry. ACS Appl. Mater. Interfaces 2020, 12, 22499–22506.

31

Ma, N. N.; Wu, F. G.; Zhang, X. D.; Jiang, Y. W.; Jia, H. R.; Wang, H. Y.; Li, Y. H.; Liu, P. D.; Gu, N.; Chen, Z. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: Comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037–13048.

32

Bhattarai, S. R.; Derry, P. J.; Aziz, K.; Singh, P. K.; Khoo, A. M.; Chadha, A. S.; Liopo, A.; Zubarev, E. R.; Krishnan, S. Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale 2017, 9, 5085–5093.

33

Zhang, A. W.; Guo, W. H.; Qi, Y. F.; Wang, J. Z.; Ma, X. X.; Yu, D. X. Synergistic effects of gold nanocages in hyperthermia and radiotherapy treatment. Nanoscale Res. Lett. 2016, 11, 279.

34

Pei, L. H.; Mori, K.; Adachi, M. Direct chemical synthesis of gold nanowires with 2-D network structure and relationship between the presence of gold ions and shape stability of gold nanowires. Chem. Lett. 2004, 33, 324–325.

35

Pei, L. H.; Mori, K.; Adachi, M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir 2004, 20, 7837–7843.

36

Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

37

Zou, R. X.; Guo, X.; Yang, J.; Li, D. D.; Peng, F.; Zhang, L.; Wang, H. J.; Yu, H. Selective etching of gold nanorods by ferric chloride at room temperature. Crystengcomm 2009, 11, 2797–2803.

38

Zhu, D. M.; Lyu, M.; Huang, Q. Q.; Suo, M.; Liu, Y.; Jiang, W.; Duo, Y. H.; Fan, K. L. Stellate plasmonic exosomes for penetrative targeting tumor NIR-Ⅱ thermo-radiotherapy. ACS Appl. Mater. Interfaces 2020, 12, 36928–36937.

39

Baffou, G.; Quidant, R.; Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 2009, 94, 153109.

40

Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.

41

Lee, J.; Chatterjee, D. K.; Lee, M. H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett. 2014, 347, 46–53.

42

Wang, S. M.; Dai, Z. F.; Ke, H. T.; Qu, E. Z.; Qi, X. X.; Zhang, K.; Wang, J. R. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer. Eur. J. Radiol. 2014, 83, 117–122.

43

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

44

Rodríguez-Fernández, J.; Pérez-Juste, J.; de Abajo, F. J. G.; Liz-Marzán, L. M. Seeded growth of submicron au colloids with quadrupole plasmon resonance modes. Langmuir 2006, 22, 7007–7010.

45

Kumar, R.; Korideck, H.; Ngwa, W.; Berbeco, R. I.; Makrigiorgos, G. M.; Sridhar, S. Third generation gold nanoplatform optimized for radiation therapy. Transl. Cancer Res. 2013, 2, 228–239.

46

Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

47

Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popović, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.

48

Chithrani, D. B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R. G.; Hill, R. P.; Jaffray, D. A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 2010, 173, 719–728.

49

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

50

Khademi, S.; Sarkar, S.; Kharrazi, S.; Amini, S. M.; Shakeri-Zadeh, A.; Ay, M. R.; Ghadiri, H. Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography. Phys. Med. 2018, 45, 127–133.

51

Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536–2548.

52

Zhang, X. D.; Chen, J.; Luo, Z. T.; Wu, D.; Shen, X.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Zhao, J.; Huo, S. D. et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014, 3, 133–141.

53

Luo, D.; Wang, X. N.; Zeng, S.; Ramamurthy, G.; Burda, C.; Basilion, J. P. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 2019, 15, 1900968.

54

Alqathami, M.; Blencowe, A.; Yeo, U. J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage X-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J. Phys. : Conf. Ser. 2013, 444, 012025.

55

Hossain, M.; Su, M. Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J. Phys. Chem. C 2012, 116, 23047–23052.

56

Ma, G. C.; Liu, X. J.; Deng, G. Y.; Yuan, H. K.; Wang, Q. G.; Lu, J. A novel theranostic agent based on porous bismuth nanosphere for CT imaging-guided combined chemo-photothermal therapy and radiotherapy. J. Mater. Chem. B 2018, 6, 6788–6795.

57

Bulmahn, J. C.; Tikhonowski, G.; Popov, A. A.; Kuzmin, A.; Klimentov, S. M.; Kabashin, A. V.; Prasad, P. N. Laser-ablative synthesis of stable aqueous solutions of elemental bismuth nanoparticles for multimodal theranostic applications. Nanomaterials 2020, 10, 1463.

58

Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

59

Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886– 4891.

60

Zhu, H. L.; Cheng, Q. Y.; Liao, M. Y.; Zhang, Z. L.; Cai, W. G.; Ma, J. J.; Sun, M. Y.; Yu, M. X.; Tian, Z. Q.; Pang, D. W. Economical synthesis of ultra-small Bi2S3 nanoparticles for high-sensitive CT imaging. Mater. Res. Express 2019, 6, 095005.

61

Du, F. Y.; Lou, J. M.; Jiang, R.; Fang, Z. Z.; Zhao, X. F.; Niu, Y. Y.; Zou, S. Q.; Zhang, M. M.; Gong, A. H.; Wu, C. Y. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int. J. Nanomedicine 2017, 12, 5973–5992.

62

Zhang, C. Y.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem. Sci. 2019, 10, 6932–6943.

63

Zhou, R. Y.; Wang, H. M.; Yang, Y. F.; Zhang, C. Y.; Dong, X. H.; Du, J. F.; Yan, L.; Zhang, G. J.; Gu, Z. J.; Zhao, Y. L. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials 2019, 189, 11–22.

64

Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. 2001 ORAL nanoscale radiotherapy-NBTXR3 hafnium oxide nanoparticles as promising cancer therapy. Eur. J. Cancer 2011, 47, S189.

65

Liu, J. J.; Yang, Y.; Zhu, W. W.; Yi, X.; Dong, Z. L.; Xu, X. N.; Chen, M. W.; Yang, K.; Lu, G.; Jiang, L. X. et al. Nanoscale metal– organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016, 97, 1–9.

66

Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012, 8, 1167–1181.

67

Marill, J.; Anesary, N. M.; Zhang, P.; Vivet, S.; Borghi, E.; Levy, L.; Pottier, A. Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect? Radiat. Oncol. 2014, 9, 150.

68

McGinnity, T. L.; Dominguez, O.; Curtis, T. E.; Nallathamby, P. D.; Hoffman, A. J.; Roeder, R. K. Hafnia (HfO2) nanoparticles as an X-ray contrast agent and mid-infrared biosensor. Nanoscale 2016, 8, 13627–13637.

69

Li, Y. Y.; Qi, Y. C.; Zhang, H. B.; Xia, Z. M.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhu, H. L.; Zhou, M. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 2020, 226, 119538.

70

Ramadoss, A.; Krishnamoorthy, K.; Kim, S. J. Novel synthesis of hafnium oxide nanoparticles by precipitation method and its characterization. Mater. Res. Bull. 2012, 47, 2680–2684.

71

Detappe, A.; Lux, F.; Tillement, O. Pushing radiation therapy limitations with theranostic nanoparticles. Nanomedicine 2016, 11, 997–999.

72

Havron, A.; Davis, M. A.; Selter, S. E.; Paskins-Hurlburt, A. J.; Hessel, S. J. Heavy metal particulate contrast materials for computed tomography of the liver. J. Comput. Assist. Tomogr. 1980, 4, 642–648.

73

Verry, C.; Sancey, L.; Dufort, S.; Le Duc, G.; Mendoza, C.; Lux, F.; Grand, S.; Arnaud, J.; Quesada, J. L.; Villa, J. et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: Nano-rad, a phase I study protocol. BMJ. Open. 2019, 9, e023591.

74

Sancey, L.; Kotb, S.; Truillet, C.; Appaix, F.; Marais, A.; Thomas, E.; van der Sanden, B.; Klein, J. P.; Laurent, B.; Cottier, M. et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 2015, 9, 2477–2488.

75

Mowat, P.; Mignot, A.; Rima, W.; Lux, F.; Tillement, O.; Roulin, C.; Dutreix, M.; Bechet, D.; Huger, S.; Humbert, L. et al. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J. Nanosci. Nanotechnol. 2011, 11, 7833–7839.

76

Miladi, I.; Aloy, M. T.; Armandy, E.; Mowat, P.; Kryza, D.; Magne, N.; Tillement, O.; Lux, F.; Billotey, C.; Janier, M. et al. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015, 11, 247–257.

77

Luchette, M.; Korideck, H.; Makrigiorgos, M.; Tillement, O.; Berbeco, R. Radiation dose enhancement of gadolinium-based aguix nanoparticles on hela cells. Nanomedicine 2014, 10, 1751–1755.

78

Kotb, S.; Detappe, A.; Lux, F.; Appaix, F.; Barbier, E. L.; Tran, V. L.; Plissonneau, M.; Gehan, H.; Lefranc, F.; Rodriguez-Lafrasse, C. et al. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: Proof of concept before phase I trial. Theranostics 2016, 6, 418–427.

79

Detappe, A.; Kunjachan, S.; Sancey, L.; Motto-Ros, V.; Biancur, D.; Drane, P.; Guieze, R.; Makrigiorgos, G. M.; Tillement, O.; Langer, R. et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Control. Release 2016, 238, 103–113.

80

Yong, Y.; Zhang, C. F.; Gu, Z. J.; Du, J. F.; Guo, Z.; Dong, X. H.; Xie, J. N.; Zhang, G. J.; Liu, X. F.; Zhao, Y. L. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164–7176.

81

Brown, R.; Tehei, M.; Oktaria, S.; Briggs, A.; Stewart, C.; Konstantinov, K.; Rosenfeld, A.; Corde, S.; Lerch, M. High-Z nanostructured ceramics in radiotherapy: First evidence of Ta2O5-induced dose enhancement on radioresistant cancer cells in an MV photon field. Part. Part. Syst. Charact. . 2014, 31, 500–505.

82

McKinnon, S.; Engels, E.; Tehei, M.; Konstantinov, K.; Corde, S.; Oktaria, S.; Incerti, S.; Lerch, M.; Rosenfeld, A.; Guatelli, S. Study of the effect of ceramic Ta2O5 nanoparticle distribution on cellular dose enhancement in a kilovoltage photon field. Phys. Med. 2016, 32, 1216–1224.

83

Engels, E.; Corde, S.; McKinnon, S.; Incerti, S.; Konstantinov, K.; Rosenfeld, A.; Tehei, M.; Lerch, M.; Guatelli, S. Optimizing dose enhancement with Ta2O5 nanoparticles for synchrotron microbeam activated radiation therapy. Phys. Med. 2016, 32, 1852–1861.

84
Engels, E.; Lerch, M.; Tehei, M.; Konstantinov, K.; Guatelli, S.; Rosenfeld, A.; Corde, S. Synchrotron activation radiotherapy: Effects of dose-rate and energy spectra to tantalum oxide nanoparticles selective tumour cell radiosentization enhancement. J. Phys. : Conf. Ser. 2017, 777, 012011.https://doi.org/10.1088/1742-6596/777/1/012011
DOI
85
Brown, R.; Corde, S.; Oktaria, S.; Konstantinov, K.; Rosenfeld, A.; Lerch, M.; Tehei, M. Nanostructures, concentrations and energies: An ideal equation to extend therapeutic efficiency on radioresistant 9L tumor cells using Ta2O5 ceramic nanostructured particles. Biomed. Phys. Eng. Express 2017, 3, 015018.https://doi.org/10.1088/2057-1976/aa56f2
DOI
86

Song, G. S.; Chen, Y. Y.; Liang, C.; Yi, X.; Liu, J. J.; Sun, X. Q.; Shen, S. D.; Yang, K.; Liu, Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 2016, 28, 7143–7148.

87

Song, G. S.; Chao, Y.; Chen, Y. Y.; Liang, C.; Yi, X.; Yang, G. B.; Yang, K.; Cheng, L.; Zhang, Q.; Liu, Z. All-in-one theranostic nanoplatform based on hollow TaOx for chelator-free labeling imaging, drug delivery, and synergistically enhanced radiotherapy. Adv. Funct. Mater. 2016, 26, 8243–8254.

88

Chen, Y. Y.; Song, G. S.; Dong, Z. L.; Yi, X.; Chao, Y.; Liang, C.; Yang, K.; Cheng, L.; Liu, Z. Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small 2017, 13, 1602869.

89

Song, G. S.; Ji, C. H.; Liang, C.; Song, X. J.; Yi, X.; Dong, Z. L.; Yang, K.; Liu, Z. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017, 112, 257–263.

90

He, W. Y.; Ai, K. L.; Lu, L. H. Nanoparticulate X-ray CT contrast agents. Sci. China Chem. 2015, 58, 753–760.

91

Yu, S. B.; Droege, M.; Segal, B.; Kim, S. H.; Sanderson, T.; Watson, A. D. Cuboidal W3S4 cluster complexes as new generation X-ray contrast agents. Inorg. Chem. 2000, 39, 1325–1328.

92

Firouzi, M.; Poursalehi, R.; Delavari, H. H.; Saba, F.; Oghabian, M. A. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography. Int. J. Biol. Macromol. 2017, 98, 479–485.

93

Jakhmola, A.; Anton, N.; Anton, H.; Messaddeq, N.; Hallouard, F.; Klymchenko, A.; Mely, Y.; Vandamme, T. F. Poly-ε -caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials 2014, 35, 2981–2986.

94

Kim, S. J.; Xu, W. L.; Ahmad, M. W.; Baeck, J. S.; Chang, Y. M.; Bae, J. E.; Chae, K. S.; Kim, T. J.; Park, J. A.; Lee, G. H. Synthesis of nanoparticle CT contrast agents: In vitro and in vivo studies. Sci. Technol. Adv. Mat. 2015, 16, 055003.

95

Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 2015, 9, 11090–11101.

96

Wen, L.; Chen, L.; Zheng, S. M.; Zeng, J. F.; Duan, G. X.; Wang, Y.; Wang, G. L.; Chai, Z. F.; Li, Z.; Gao, M. Y. Ultrasmall biocompatible WO3–x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 2016, 28, 5072–5079.

97

Qiu, J. J.; Xiao, Q. F.; Zheng, X. P.; Zhang, L. B.; Xing, H. Y.; Ni, D. L.; Liu, Y. Y.; Zhang, S. J.; Ren, Q. G.; Hua, Y. Q. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Res. 2015, 8, 3580–3590.

98

Yong, Y.; Cheng, X. J.; Bao, T.; Zu, M.; Yan, L.; Yin, W. Y.; Ge, C. C.; Wang, D. L.; Gu, Z. J.; Zhao, Y. L. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451–12463.

99

Yong, Y.; Zhou, L. J.; Zhang, S. S.; Yan, L.; Gu, Z. J.; Zhang, G. J.; Zhao, Y. L. Gadolinium polytungstate nanoclusters: A new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Mater. 2016, 8, e273.

100

Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103.

101

K. A, M. A.; Rashid, R. A.; Lazim, R. M.; Dollah, N.; Razak, K. A.; Rahman, W. N. Evaluation of radiosensitization effects by platinum nanodendrites for 6 mv photon beam radiotherapy. Radiat. Phys. Chem. 2018, 150, 40–45.

102
Li, Y.; Yun, K. H.; Lee, H.; Goh, S. H.; Suh, Y. G.; Choi, Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 2019, 197, 12–19.https://doi.org/10.1016/j.biomaterials.2019.01.004
DOI
103

Yao, M. H.; Ma, M.; Chen, Y.; Jia, X. Q.; Xu, G.; Xu, H. X.; Chen, H. R.; Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 2014, 35, 8197–8205.

104

Ebel, H.; Svagera, R.; Ebel, M. F.; Shaltout, A.; Hubbell, J. H. Numerical description of photoelectric absorption coefficients for fundamental parameter programs. X-Ray Spectrom. 2003, 32, 442–451.

105
Mirkin, C. A.; Meade, T. J.; Petrosko, S. H.; Stegh, A. H. Nanotechnology-based Precision Tools for the Detection and Treatment of Cancer. Springer International Publishing: Cham, 2015.https://doi.org/10.1007/978-3-319-16555-4
DOI
106

Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R. DNA damage induced by the direct effect of radiation. Radiat. Phys. Chem. 2008, 77, 1280–1285.

107

Tominaga, H.; Kodama, S.; Matsuda, N.; Suzuki, K.; Watanabe, M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J. Radiat. Res. 2004, 45, 181–188.

108

Karnas, S. J.; Moiseenko, V. V.; Yu, E.; Truong, P.; Battista, J. J. Monte carlo simulations and measurement of DNA damage from X-ray-triggered auger cascades in iododeoxyuridine (IUdR). Radiat. Environ. Biophys. 2001, 40, 199–206.

109

Chompoosor, A.; Saha, K.; Ghosh, P. S.; Macarthy, D. J.; Miranda, O. R.; Zhu, Z. J.; Arcaro, K. F.; Rotello, V. M. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6, 2246–2249.

110

Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408–6419.

111

Jiang, W.; Li, Q.; Xiao, L.; Dou, J. X.; Liu, Y.; Yu, W. H.; Ma, Y. C.; Li, X. Q.; You, Y. Z.; Tong, Z. T. et al. Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano 2018, 12, 5684–5698.

112

Borran, A. A.; Aghanejad, A.; Farajollahi, A.; Barar, J.; Omidi, Y. Gold nanoparticles for radiosensitizing and imaging of cancer cells. Radiat. Phys. Chem. 2018, 152, 137–144.

113

Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iati, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. : Condens. Matter. 2017, 29, 203002.

114

Choi, W. I.; Sahu, A.; Kim, Y. H.; Tae, G. Photothermal cancer therapy and imaging based on gold nanorods. Ann. Biomed. Eng. 2012, 40, 534–546.

115

El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834.

116

Li, R.; Feng, F.; Chen, Z. Z.; Bai, Y. F.; Guo, F. F.; Wu, F. Y.; Zhou, G. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification. Talanta 2015, 140, 143–149.

117

Gnedenko, O. V.; Mezentsev, Y. V.; Molnar, A. A.; Lisitsa, A. V.; Ivanov, A. S.; Archakov, A. I. Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal. Chim. Acta. 2013, 759, 105–109.

118

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: A potential cancer diagnostic marker. Nano Lett. 2007, 7, 1591– 1597.

119

Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

120

Chen, N.; Yang, W. T.; Bao, Y.; Xu, H. L.; Qin, S. B.; Tu, Y. BSA capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Adv. 2015, 5, 40514–40520.

121

Chang, M. Y.; Shiau, A. L.; Chen, Y. H.; Chang, C. J.; Chen, H. H. W.; Wu, C. L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008, 99, 1479–1484.

122

Dorsey, J. F.; Sun, L.; Joh, D. Y.; Witztum, A.; Kao, G. D.; Alonso-Basanta, M.; Avery, S.; Hahn, S. M.; Al Zaki, A.; Tsourkas, A. Gold nanoparticles in radiation research: Potential applications for imaging and radiosensitization. Transl. Cancer Res. 2013, 2, 280–291.

123

Kandanapitiye, M. S.; Gao, M.; Molter, J.; Flask, C. A.; Huang, S. D. Synthesis, characterization, and X-ray attenuation properties of ultrasmall bioi nanoparticles: Toward renal clearable particulate CT contrast agents. Inorg. Chem. 2014, 53, 10189–10194.

124

Li, Z. L.; Hu, Y.; Howard, K. A.; Jiang, T. T.; Fan, X. L.; Miao, Z. H.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano 2016, 10, 984–997.

125

Mao, F. X.; Wen, L.; Sun, C. X.; Zhang, S. H.; Wang, G. L.; Zeng, J. F.; Wang, Y.; Ma, J. M.; Gao, M. Y.; Li, Z. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer. ACS Nano 2016, 10, 11145–11155.

126

Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. A. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716–2723.

127

Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

128

Lei, P. P.; An, R.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. Ultrafast synthesis of ultrasmall poly(vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/photothermal-imaging-guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1702018.

129

Rathnayake, S.; Mongan, J.; Torres, A. S.; Colborn, R.; Gao, D. W.; Yeh, B. M.; Fu, Y. J. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol. Imaging 2016, 11, 254–261.

130

Deng, J. J.; Xu, S. D.; Hu, W. K.; Xun, X. J.; Zheng, L. Y.; Su, M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 2018, 154, 24–33.

131

Jiao, L.; Li, Q. X.; Deng, J. J.; Okosi, N.; Xia, J. F.; Su, M. Nanocellulose templated growth of ultra-small bismuth nanoparticles for enhanced radiation therapy. Nanoscale 2018, 10, 6751–6757.

132

Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009, 5, 225–231.

133

Nair, L. S.; Laurencin, C. T. Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotechnol. 2007, 3, 301–316.

134

McQuade, C.; Al Zaki, A.; Desai, Y.; Vido, M.; Sakhuja, T.; Cheng, Z. L.; Hickey, R. J.; Joh, D.; Park, S. J.; Kao, G. et al. A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small 2015, 11, 834–843.

135

Ni, K. Y.; Lan, G. X.; Chan, C.; Quigley, B.; Lu, K. D.; Aung, T.; Guo, N. N.; La Riviere, P.; Weichselbaum, R. R.; Lin, W. B. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 2018, 9, 2351.

136

Mendoza, J. G.; Frutis, M. A. A.; Flores, G. A.; Hipólito, M. G.; Maciel Cerda, A.; Azorín Nieto, J.; Montalvo, T. R.; Falcony, C. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications. Appl. Radiat. Isot. 2010, 68, 696–699.

137

Bonvalot, S.; Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J. M.; Lassau, N. et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 2017, 23, 908–917.

138

Pracht, M.; Chajon, E.; de Baere, T.; Nguyen, F.; Bronowicki, J. P.; Vendrely, V.; Baumann, A. S.; Croise-Laurent, V.; Rio, E.; Rolland, Y. et al. Hepatocellular carcinoma and liver metastasis treated by hafnium oxide nanoparticles activated by stereotactic body radiation therapy. Ann. Oncol. 2018, 29, viii240.

139

Pottier, A.; Borghi, E.; Levy, L. Metals as radio-enhancers in oncology: The industry perspective. Biochem. Biophys. Res. Commun. 2015, 468, 471–475.

140

Pottier, A.; Borghi, E.; Levy, L. New use of metals as nanosized radioenhancers. Anticancer Res. 2014, 34, 443–453.

141

Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Breaking the depth dependency of phototherapy with cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370–379.

142

Alric, C.; Miladi, I.; Kryza, D.; Taleb, J.; Lux, F.; Bazzi, R.; Billotey, C.; Janier, M.; Perriat, P.; Roux, S. et al. The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale 2013, 5, 5930–5939.

143

Barreto, J. A.; O'Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.

144

Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717.

145

Zhao, Y.; Peng, J.; Li, J. L.; Huang, L.; Yang, J. Y.; Huang, K.; Li, H. W.; Jiang, N.; Zheng, S. K.; Zhang, X. N. et al. Tumor-targeted and clearable human protein-based mri nanoprobes. Nano Lett. 2017, 17, 4096–4100.

146

Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.

147

Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Fan, F. Y.; Fan, S. J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012, 33, 4628–4638.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2020
Revised: 11 January 2021
Accepted: 15 January 2021
Published: 27 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We gratefully acknowledge support by the National Natural Science Foundation of China (Nos. 21674116 and 21874024), and the joint research projects of Health and Education Commission of Fujian Province (No. 2019-WJ-20).

Return