Journal Home > Volume 14 , Issue 11

Due to the enhanced ambient structural stability and excellent optoelectronic properties, all-inorganic metal halide perovskite nanowires have become one of the most attractive candidates for flexible electronics, photovoltaics and optoelectronics. Their elastic property and mechanical robustness become the key factors for device applications under realistic service conditions with various mechanical loadings. Here, we demonstrate that high tensile elastic strain (~ 4% to ~ 5.1%) can be achieved in vapor-liquid-solid-grown single-crystalline CsPbBr3 nanowires through in situ scanning electron microscope (SEM) buckling experiments. Such high flexural elasticity can be attributed to the structural defect-scarce, smooth surface, single-crystallinity and nanomechanical size effect of CsPbBr3 nanowires. The mechanical reliability of CsPbBr3 nanowire- based flexible photodetectors was examined by cyclic bending tests, with no noticeable performance deterioration observed after 5, 000 cycles. The above results suggest great application potential for using all-inorganic perovskite nanowires in flexible electronics and energy harvesting systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High elasticity of CsPbBr3 perovskite nanowires for flexible electronics

Show Author's information Xiaocui Li1,§You Meng2,§Rong Fan1,3,§Sufeng Fan1Chaoqun Dang1Xiaobin Feng1Johnny C. Ho2( )Yang Lu1,4 ( )
Department of Mechanical Engineering City University of Hong KongHong Kong 999077 China
Department of Materials Science and Engineering City University of Hong KongHong Kong 999077 China
School of Automotive Engineering Dalian University of TechnologyDalian 116024 China
Nano-Manufacturing Laboratory (NML) Shenzhen Research Institute of City University of Hong KongShenzhen 518057 China

§ Xiaocui Li, You Meng, and Rong Fan contributed equally to this work.

Abstract

Due to the enhanced ambient structural stability and excellent optoelectronic properties, all-inorganic metal halide perovskite nanowires have become one of the most attractive candidates for flexible electronics, photovoltaics and optoelectronics. Their elastic property and mechanical robustness become the key factors for device applications under realistic service conditions with various mechanical loadings. Here, we demonstrate that high tensile elastic strain (~ 4% to ~ 5.1%) can be achieved in vapor-liquid-solid-grown single-crystalline CsPbBr3 nanowires through in situ scanning electron microscope (SEM) buckling experiments. Such high flexural elasticity can be attributed to the structural defect-scarce, smooth surface, single-crystallinity and nanomechanical size effect of CsPbBr3 nanowires. The mechanical reliability of CsPbBr3 nanowire- based flexible photodetectors was examined by cyclic bending tests, with no noticeable performance deterioration observed after 5, 000 cycles. The above results suggest great application potential for using all-inorganic perovskite nanowires in flexible electronics and energy harvesting systems.

Keywords: flexible electronics, CsPbBr3, nanomechanics, perovskite nanowire, in situ testing, elasticity

References(33)

1

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

2

Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628– 5641.

3

Lu, M.; Zhang, Y.; Wang, S. X.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 2019, 29, 1902008.

4

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

5

Meng, Y.; Lai, Z. X.; Li, F. Z.; Wang, W.; Yip, S. P.; Quan, Q.; Bu, X. M.; Wang, F.; Bao, Y.; Hosomi, T. et al. Perovskite core-shell nanowire transistors: Interfacial transfer doping and surface passivation. ACS Nano 2020, 14, 12749–12760.

6

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

7

Li, Y. W.; Meng, L.; Yang, Y. M.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

8

Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

9

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192.

10

Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S.; Werner, P.; Gösele, U.; Ballif, C. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 2006, 6, 622–625.

11

Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.

12

Zhu, Y.; Xu, F.; Qin, Q. Q.; Fung, W. Y.; Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009, 9, 3934–3939.

13

Wang, L. H.; Zheng, K.; Zhang, Z.; Han, X. D. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011, 11, 2382–2385.

14

Zheng, K.; Han, X. D.; Wang, L. H.; Zhang, Y. F.; Yue, Y. H.; Qin, Y.; Zhang, X. N.; Zhang, Z. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 2009, 9, 2471–2476.

15

Stan, G.; Krylyuk, S.; Davydov, A. V.; Levin, I.; Cook, R. F. Ultimate bending strength of Si nanowires. Nano Lett. 2012, 12, 2599–2604.

16

Zhang, H. T.; Tersoff, J.; Xu, S.; Chen, H. X.; Zhang, Q. B.; Zhang, K. L.; Yang, Y.; Lee, C. S.; Tu, K. N.; Li, J. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2016, 2, e1501382.

17

Tang, D. M.; Ren, C. L.; Wang, M. S.; Wei, X. L.; Kawamoto, N.; Liu, C.; Bando, Y.; Mitome, M.; Fukata, N.; Golberg, D. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 2012, 12, 1898–1904.

18

Banerjee, A.; Bernoulli, D.; Zhang, H. T.; Yuen, M. F.; Liu, J. B.; Dong, J. C.; Ding, F.; Lu, J.; Dao, M.; Zhang, W. J. et al. Ultralarge elastic deformation of nanoscale diamond. Science 2018, 360, 300–302.

19

Nie, A. M.; Bu, Y. Q.; Li, P. H.; Zhang, Y. Z.; Jin, T. Y.; Liu, J. B.; Su, Z.; Wang, Y. B.; He, J. L.; Liu, Z. Y. et al. Approaching diamond's theoretical elasticity and strength limits. Nat. Commun. 2019, 10, 5533.

20

Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C. W; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

21

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

22

Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

23

Troughton, J.; Bryant, D.; Wojciechowski, K.; Carnie, M. J.; Snaith, H.; Worsley, D. A.; Watson, T. M. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 2015, 3, 9141–9145.

24

Nejand, B. A.; Nazari, P.; Gharibzadeh, S.; Ahmadi, V.; Moshaii, A. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 2017, 53, 747–750.

25

Jing, H.; Peng, R. W.; Ma, R. M.; He, J.; Zhou, Y.; Yang, Z. Q.; Li, C. Y.; Liu, Y.; Guo, X. J.; Zhu, Y. Y. et al. Flexible ultrathin single- crystalline perovskite photodetector. Nano Lett. 2020, 20, 7144–7151.

26

Liu, X.; Guo, X. Y.; Lv, Y.; Hu, Y. S.; Lin, J.; Fan, Y.; Zhang, N.; Liu, X. Y. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 18141–18148.

27

Ahn, S. M.; Jung, E. D.; Kim, S. H.; Kim, H.; Lee, S.; Song, M. H.; Kim, J. Y. Nanomechanical approach for flexibility of organic-inorganic hybrid perovskite solar cells. Nano Lett. 2019, 19, 3707–3715.

28

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single- crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

29

Naji, K.; Dumont, H.; Saint-Girons, G.; Penuelas, J.; Patriarche, G.; Hocevar, M.; Zwiller, V.; Gendry, M. Growth of vertical and defect free InP nanowires on SrTiO3(001) substrate and comparison with growth on silicon. J. Cryst. Growth 2012, 343, 101–104.

30

Meng, Y.; Lan, C. L.; Li, F. Z.; Yip, S. P.; Wei, R. J.; Kang, X. L.; Bu, X. M.; Dong, R. T.; Zhang, H.; Ho, J. C. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano 2019, 13, 6060–6070.

31

Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S. H.; Yu, Y.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.

32

Li, J.; Shan, Z. W.; Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108–114.

33

Zhu, C.; Niu, X. X.; Fu, Y. H.; Li, N. X.; Hu, C.; Chen, Y. H.; He, X.; Na, G. R.; Liu, P. F.; Zai, H. C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 2019, 10, 815.

Video
12274_2021_3332_MOESM2_ESM.mp4
12274_2021_3332_MOESM3_ESM.mp4
File
12274_2021_3332_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2020
Revised: 11 January 2021
Accepted: 14 January 2021
Published: 03 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by Hong Kong Research Grant Council (RGC) (Nos. CityU 11207416 and CityU 11306520), City University of Hong Kong (No. 9667194), and the National Natural Science Foundation of China (No. 11922215).

Return