AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High elasticity of CsPbBr3 perovskite nanowires for flexible electronics

Xiaocui Li1,§You Meng2,§Rong Fan1,3,§Sufeng Fan1Chaoqun Dang1Xiaobin Feng1Johnny C. Ho2( )Yang Lu1,4 ( )
Department of Mechanical Engineering City University of Hong KongHong Kong 999077 China
Department of Materials Science and Engineering City University of Hong KongHong Kong 999077 China
School of Automotive Engineering Dalian University of TechnologyDalian 116024 China
Nano-Manufacturing Laboratory (NML) Shenzhen Research Institute of City University of Hong KongShenzhen 518057 China

§ Xiaocui Li, You Meng, and Rong Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Due to the enhanced ambient structural stability and excellent optoelectronic properties, all-inorganic metal halide perovskite nanowires have become one of the most attractive candidates for flexible electronics, photovoltaics and optoelectronics. Their elastic property and mechanical robustness become the key factors for device applications under realistic service conditions with various mechanical loadings. Here, we demonstrate that high tensile elastic strain (~ 4% to ~ 5.1%) can be achieved in vapor-liquid-solid-grown single-crystalline CsPbBr3 nanowires through in situ scanning electron microscope (SEM) buckling experiments. Such high flexural elasticity can be attributed to the structural defect-scarce, smooth surface, single-crystallinity and nanomechanical size effect of CsPbBr3 nanowires. The mechanical reliability of CsPbBr3 nanowire- based flexible photodetectors was examined by cyclic bending tests, with no noticeable performance deterioration observed after 5, 000 cycles. The above results suggest great application potential for using all-inorganic perovskite nanowires in flexible electronics and energy harvesting systems.

Electronic Supplementary Material

Video
12274_2021_3332_MOESM2_ESM.mp4
12274_2021_3332_MOESM3_ESM.mp4
Download File(s)
12274_2021_3332_MOESM1_ESM.pdf (2.1 MB)

References

1

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

2

Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628– 5641.

3

Lu, M.; Zhang, Y.; Wang, S. X.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 2019, 29, 1902008.

4

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

5

Meng, Y.; Lai, Z. X.; Li, F. Z.; Wang, W.; Yip, S. P.; Quan, Q.; Bu, X. M.; Wang, F.; Bao, Y.; Hosomi, T. et al. Perovskite core-shell nanowire transistors: Interfacial transfer doping and surface passivation. ACS Nano 2020, 14, 12749–12760.

6

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

7

Li, Y. W.; Meng, L.; Yang, Y. M.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

8

Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

9

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192.

10

Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S.; Werner, P.; Gösele, U.; Ballif, C. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 2006, 6, 622–625.

11

Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.

12

Zhu, Y.; Xu, F.; Qin, Q. Q.; Fung, W. Y.; Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009, 9, 3934–3939.

13

Wang, L. H.; Zheng, K.; Zhang, Z.; Han, X. D. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011, 11, 2382–2385.

14

Zheng, K.; Han, X. D.; Wang, L. H.; Zhang, Y. F.; Yue, Y. H.; Qin, Y.; Zhang, X. N.; Zhang, Z. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 2009, 9, 2471–2476.

15

Stan, G.; Krylyuk, S.; Davydov, A. V.; Levin, I.; Cook, R. F. Ultimate bending strength of Si nanowires. Nano Lett. 2012, 12, 2599–2604.

16

Zhang, H. T.; Tersoff, J.; Xu, S.; Chen, H. X.; Zhang, Q. B.; Zhang, K. L.; Yang, Y.; Lee, C. S.; Tu, K. N.; Li, J. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2016, 2, e1501382.

17

Tang, D. M.; Ren, C. L.; Wang, M. S.; Wei, X. L.; Kawamoto, N.; Liu, C.; Bando, Y.; Mitome, M.; Fukata, N.; Golberg, D. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 2012, 12, 1898–1904.

18

Banerjee, A.; Bernoulli, D.; Zhang, H. T.; Yuen, M. F.; Liu, J. B.; Dong, J. C.; Ding, F.; Lu, J.; Dao, M.; Zhang, W. J. et al. Ultralarge elastic deformation of nanoscale diamond. Science 2018, 360, 300–302.

19

Nie, A. M.; Bu, Y. Q.; Li, P. H.; Zhang, Y. Z.; Jin, T. Y.; Liu, J. B.; Su, Z.; Wang, Y. B.; He, J. L.; Liu, Z. Y. et al. Approaching diamond's theoretical elasticity and strength limits. Nat. Commun. 2019, 10, 5533.

20

Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C. W; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

21

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

22

Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

23

Troughton, J.; Bryant, D.; Wojciechowski, K.; Carnie, M. J.; Snaith, H.; Worsley, D. A.; Watson, T. M. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 2015, 3, 9141–9145.

24

Nejand, B. A.; Nazari, P.; Gharibzadeh, S.; Ahmadi, V.; Moshaii, A. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 2017, 53, 747–750.

25

Jing, H.; Peng, R. W.; Ma, R. M.; He, J.; Zhou, Y.; Yang, Z. Q.; Li, C. Y.; Liu, Y.; Guo, X. J.; Zhu, Y. Y. et al. Flexible ultrathin single- crystalline perovskite photodetector. Nano Lett. 2020, 20, 7144–7151.

26

Liu, X.; Guo, X. Y.; Lv, Y.; Hu, Y. S.; Lin, J.; Fan, Y.; Zhang, N.; Liu, X. Y. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 18141–18148.

27

Ahn, S. M.; Jung, E. D.; Kim, S. H.; Kim, H.; Lee, S.; Song, M. H.; Kim, J. Y. Nanomechanical approach for flexibility of organic-inorganic hybrid perovskite solar cells. Nano Lett. 2019, 19, 3707–3715.

28

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single- crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

29

Naji, K.; Dumont, H.; Saint-Girons, G.; Penuelas, J.; Patriarche, G.; Hocevar, M.; Zwiller, V.; Gendry, M. Growth of vertical and defect free InP nanowires on SrTiO3(001) substrate and comparison with growth on silicon. J. Cryst. Growth 2012, 343, 101–104.

30

Meng, Y.; Lan, C. L.; Li, F. Z.; Yip, S. P.; Wei, R. J.; Kang, X. L.; Bu, X. M.; Dong, R. T.; Zhang, H.; Ho, J. C. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano 2019, 13, 6060–6070.

31

Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S. H.; Yu, Y.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.

32

Li, J.; Shan, Z. W.; Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108–114.

33

Zhu, C.; Niu, X. X.; Fu, Y. H.; Li, N. X.; Hu, C.; Chen, Y. H.; He, X.; Na, G. R.; Liu, P. F.; Zai, H. C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 2019, 10, 815.

Nano Research
Pages 4033-4037
Cite this article:
Li X, Meng Y, Fan R, et al. High elasticity of CsPbBr3 perovskite nanowires for flexible electronics. Nano Research, 2021, 14(11): 4033-4037. https://doi.org/10.1007/s12274-021-3332-0
Topics:

1172

Views

31

Crossref

33

Web of Science

28

Scopus

0

CSCD

Altmetrics

Received: 19 October 2020
Revised: 11 January 2021
Accepted: 14 January 2021
Published: 03 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return