Journal Home > Volume 14 , Issue 11

The next generation of electronics technology is purely going to be based on wearable sensing systems. Wearable electronic sensors that can operate in a continuous and sustainable manner without the need of an external power sources, are essential for portable and mobile electronic applications. In this review article, the recent progress and advantages of wearable self-powered smart chemical sensors systems for wearable electronics are presented. An overview of various modes of energy conversion and storage technologies for self-powered devices is provided. Self-powered chemical sensors (SPCS) systems with integrated energy units are then discussed, separated as solar cell-based SPCS, triboelectric nano-generators based SPCS, piezoelectric nano-generators based SPCS, energy storage device based SPCS, and thermal energy-based SPCS. Finally, the outlook on future prospects of wearable chemical sensors in self-powered sensing systems is addressed.


menu
Abstract
Full text
Outline
About this article

Recent developments in self-powered smart chemical sensors for wearable electronics

Show Author's information Aaryashree1,§Surjit Sahoo2,§Pravin Walke3Saroj Kumar Nayak2Chandra Sekhar Rout4( )Dattatray J. Late5( )
Shibaura Institute of TechnologyKoto-City, Tokyo135-8548Japan
School of Basic SciencesIndian Institute of Technology BhubaneswarJatni, Odisha752050India
National Centre for Nanosciences and NanotechnologyUniversity of MumbaiMumbai, Maharashtra400098India
Centre for Nano and Material SciencesJain UniversityRamanagaram, Bangalore562112India
Centre for Nanoscience & Nanotechnology, Amity University MaharashtraMumbai-Pune Expressway, Bhatan, Post – Somathne, PanvelMaharashtra410206India

§ Aaryashree and Surjit Sahoo contributed equally to this work.

Abstract

The next generation of electronics technology is purely going to be based on wearable sensing systems. Wearable electronic sensors that can operate in a continuous and sustainable manner without the need of an external power sources, are essential for portable and mobile electronic applications. In this review article, the recent progress and advantages of wearable self-powered smart chemical sensors systems for wearable electronics are presented. An overview of various modes of energy conversion and storage technologies for self-powered devices is provided. Self-powered chemical sensors (SPCS) systems with integrated energy units are then discussed, separated as solar cell-based SPCS, triboelectric nano-generators based SPCS, piezoelectric nano-generators based SPCS, energy storage device based SPCS, and thermal energy-based SPCS. Finally, the outlook on future prospects of wearable chemical sensors in self-powered sensing systems is addressed.

Keywords: wearable electronics, self-powered, chemical sensors, smart sensors

References(183)

1

Dong, K.; Wu, Z. Y.; Deng, J.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, e1804944.

2

Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

3

Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

4

Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.

5

Ai, Y. F.; Lou, Z.; Chen, S.; Chen, D.; Wang, Z. M.; Jiang, K.; Shen, G. Z. All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 2017, 35, 121–127.

6

Merelli, I.; Morganti, L.; Corni, E.; Pellegrino, C.; Cesini, D.; Roverelli, L.; Zereik, G.; D'Agostino, D. Low-power portable devices for metagenomics analysis: Fog computing makes bioinformatics ready for the Internet of Things. Futur. Gener. Comput. Syst. 2018, 88, 467–478.

7
Sebestyen, G.; Hangan, A.; Oniga, S.; Gál, Z. eHealth solutions in the context of Internet of Things. In 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2014, pp 1–6.https://doi.org/10.1109/AQTR.2014.6857876
DOI
8

Bayo-Monton, J. L.; Martinez-Millana, A.; Han, W. S.; Fernandez-Llatas, C.; Sun, Y.; Traver, V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors 2018, 18, 1851.

9
Perumal, T.; Sulaiman, M. N.; Leong, C. Y. Internet of Things (IoT) enabled water monitoring system. In 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2015, pp 86–87.https://doi.org/10.1109/GCCE.2015.7398710
DOI
10

Nagabooshanam, S.; Roy, S.; Mathur, A.; Mukherjee, I.; Krishnamurthy, S.; Bharadwaj, L. M. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci. Rep. 2019, 9, 19862.

11
Kocakulak, M.; Butun, I. An overview of wireless sensor networks towards internet of things. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2017, pp 1–6.https://doi.org/10.1109/CCWC.2017.7868374
DOI
12

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

13

Bandodkar, A. J.; Hung, V. W. S.; Jia, W. Z.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123–128.

14

Matzeu, G.; Florea, L.; Diamond, D. Advances in wearable chemical sensor design for monitoring biological fluids. Sensors Actuators B Chem. 2015, 211, 403–418.

15

Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.

16

Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

17

Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J. et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248.

18

An, B. W.; Shin, J. H.; Kim, S. Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y. G.; Cho, E. et al. Smart sensor systems for wearable electronic devices. Polymers 2017, 9, 303.

19

Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992.

20

Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

21

Takei, K.; Gao, W.; Wang, C.; Javey, A. Physical and chemical sensing with electronic skin. Proc. IEEE 2019, 107, 2155–2167.

22

Wu, H.; Huang, Y. A.; Xu, F.; Duan, Y. Q.; Yin, Z. P. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv. Mater. 2016, 28, 9881–9919.

23

Pu, X.; Hu, W. G.; Wang, Z. L. Toward wearable self-charging power systems: The integration of energy-harvesting and storage devices. Small 2018, 14, 1702817.

24

Xu, W.; Huang, L. B.; Wong, M. C.; Chen, L.; Bai, G. X.; Hao, J. H. Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 2017, 7, 1601529.

25

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

26

Glynne-Jones, P.; White, N. M. Self-powered systems: A review of energy sources. Sens. Rev. 2001, 21, 91–98.

27

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

28

Berchmans, S.; Bandodkar, A. J.; Jia, W. Z.; Ramírez, J.; Meng, Y. S.; Wang, J. An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A 2014, 2, 15788–15795.

29

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

30

Zhang, Y.; Zhao, Y.; Ren, J.; Weng, W.; Peng, H. S. Advances in wearable fiber-shaped lithium-ion batteries. Adv. Mater. 2016, 28, 4524–4531.

31

Dong, L. B.; Xu, C. J.; Li, Y.; Wu, C. L.; Jiang, B. Z.; Yang, Q.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 2016, 28, 1675–1681.

32

Zhang, Y.; Zhao, Y.; Cheng, X. L.; Weng, W.; Ren, J.; Fang, X.; Jiang, Y. S.; Chen, P. N.; Zhang, Z. T.; Wang, Y. G. et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem., Int. Ed. 2015, 54, 11177–11182.

33

Cho, S. H.; Lee, J.; Lee, M. J.; Kim, H. J.; Lee, S. M.; Choi, K. C. Plasmonically engineered textile polymer solar cells for high-performance, wearable photovoltaics. ACS Appl. Mater. Interfaces 2019, 11, 20864–20872.

34

Lee, G.; Kim, M.; Choi, Y. W.; Ahn, N.; Jang, J.; Yoon, J.; Kim, S. M.; Lee, J. G.; Kang, D.; Jung, H. S. et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ. Sci. 2019, 12, 3182–3191.

35

Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

36
Huang, X. C.; Zhang, L. L.; Zhang, Z.; Guo, S.; Shang, H.; Li, Y. B.; Liu, J. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron. 2019, 124–125, 40–52.https://doi.org/10.1016/j.bios.2018.09.086
DOI
37

Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G. R. Trends of biofuel cells for smart biomedical devices. Int. J. Hydrogen Energy 2021, 46, 3220–3229.

38

Jeerapan, I.; Sempionatto, J. R.; Wang, J. On-body bioelectronics: Wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 2020, 30, 1906243.

39

Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F. et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069.

40

Kim, C. S.; Yang, H. M.; Lee, J.; Lee, G. S.; Choi, H.; Kim, Y. J.; Lim, S. H.; Cho, S. H.; Cho, B. J. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 2018, 3, 501–507.

41

Fan, K. Q.; Liu, Z. H.; Liu, H. Y.; Wang, L. S.; Zhu, Y. M.; Yu, B. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 2017, 110, 143902.

42

Yang, J. H.; Cho, H. S.; Park, S. H.; Song, S. H.; Yun, K. S.; Lee, J. H. Effect of garment design on piezoelectricity harvesting from joint movement. Smart Mater. Struct. 2016, 25, 035012.

43
Sorayani Bafqi, M. S.; Sadeghi, A. H.; Latifi, M.; Bagherzadeh, R. Design and fabrication of a piezoelectric out-put evaluation system for sensitivity measurements of fibrous sensors and actuators. J. Ind. Text., in press, DOI: 10.1177/1528083719867443.https://doi.org/10.1177/1528083719867443
DOI
44

Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

45

Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

46

Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.

47

Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2019, 31, 1801993.

48

Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

49

Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

50

Xu, P.; Kang, J.; Choi, J. B.; Suhr, J.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Kim, B. S.; Chou, T. W. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano 2014, 8, 9437–9445.

51

Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

52

Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

53

Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

54

Zhu, B. W.; Gong, S.; Cheng, W. L. Softening gold for elastronics. Chem. Soc. Rev. 2019, 48, 1668–1711.

55

Ha, M.; Park, J.; Lee, Y.; Ko, H. Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 2015, 9, 3421–3427.

56

Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

57

Lou, Z.; Li, L.; Wang, L. L.; Shen, G. Z. Recent progress of self-powered sensing systems for wearable electronics. Small 2017, 13, 1701791.

58

Shi, B. J.; Liu, Z.; Zheng, Q.; Meng, J. P.; Ouyang, H.; Zou, Y.; Jiang, D. J.; Qu, X. C.; Yu, M.; Zhao, L. M. et al. Body-integrated self-powered system for wearable and implantable applications. ACS Nano 2019, 13, 6017–6024.

59

Ahmed, A.; Hassan, I.; Helal, A. S.; Sencadas, V.; Radhi, A.; Jeong, C. K.; El-Kady, M. F. Triboelectric nanogenerator versus piezoelectric generator at low frequency (< 4 Hz): A quantitative comparison. iScience 2020, 23, 101286.

DOI
60
Jo, S. E.; Kim, M. S.; Kim, M. K.; Kim, H. L.; Kim, Y. J. Human body heat energy harvesting using flexible thermoelectric generator for autonomous microsystems. In Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, 2012, pp 839–841.
61
Alhawari, M.; Mohammad, B.; Saleh, H.; Ismail, M. Energy harvesting for self-powered wearable devices. In Analog Circuits and Signal Processing, Springer International Publishing, 2018.https://doi.org/10.1007/978-3-319-62578-2
DOI
62

Husain, A. A. F.; Hasan, W. Z. W.; Shafie, S.; Hamidon, M. N.; Pandey, S. S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791.

63

Sun, Y. L.; Yan, X. B. Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL 2017, 1, 1700002.

64

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

65
You, J. B.; Dou, L. T.; Hong, Z. R.; Li, G.; Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 2013, 38, 1909–1928.https://doi.org/10.1016/j.progpolymsci.2013.04.005
DOI
66

Zhang, X. L.; Johansson, E. M. J. Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J. Mater. Chem. A 2017, 5, 303–310.

67

Zhou, M. Y.; Al-Furjan, M. S. H.; Zou, J.; Liu, W. T. A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609.

68

Liu, H. C.; Zhong, J. W.; Lee, C.; Lee, S. W.; Lin, L. W. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306.

69

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

70

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

71

Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

72

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

73

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

74

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

75

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

76

Chen, T.; Shi, Q. F.; Zhu, M. L.; He, T. Y.; Sun, L. N.; Yang, L.; Lee, C. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator. ACS Nano 2018, 12, 11561–11571.

77

Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009, 21, 2185–2189.

78

Kim, T.; Song, W. T.; Son, D. Y.; Ono, L. K.; Qi, Y. B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.

79

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

80

Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790.

81

Borah, R.; Hughson, F. R.; Johnston, J.; Nann, T. On battery materials and methods. Mater. Today Adv. 2020, 6, 100046.

82

Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418.

83

Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984.

84

Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Manoharan, S.; Kim, S. J. High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. J. Mater. Chem. A 2019, 7, 21693–21703.

85

Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Kim, S. J. Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorg. Chem. Front. 2019, 6, 1775–1784.

86

Sahoo, S.; Pazhamalai, P.; Mariappan, V. K.; Veerasubramani, G. K.; Kim, N. J.; Kim, S. J. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors. Inorg. Chem. Front. 2020, 7, 1492–1502.

87

Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730

88
Kim, B. K.; Sy, S.; Yu, A. P.; Zhang, J. J. Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems; John Wiley & Sons, Ltd. : Hoboken, 2015; pp 1–25.https://doi.org/10.1002/9781118991978.hces112
DOI
89

Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

90

Shahzad, S.; Shah, A.; Kowsari, E.; Iftikhar, F. J.; Nawab, A.; Piro, B.; Akhter, M. S.; Rana, U. A.; Zou, Y. J. Ionic liquids as environmentally benign electrolytes for high-performance supercapacitors. Glob. Chall. 2018, 3, 1800023.

91

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

92

Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250.

93

McDonagh, C.; Burke, C. S.; MacCraith, B. D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422.

94

Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781–2800.

95

Zhang, C.; Vetelino, J. F. Chemical sensors based on electrically sensitive quartz resonators. Sensors Actuators B Chem. 2003, 91, 320–325.

96

Janata, J.; Josowicz, M. Chemical modulation of work function as a transduction mechanism for chemical sensors. Acc. Chem. Res. 1998, 31, 241–248.

97

Nylander, C. Chemical and biological sensors. J. Phys. E 1985, 18, 736–750.

98

Dickert, F. L.; Forth, P.; Lieberzeit, P. A.; Voigt, G. Quality control of automotive engine oils with mass-sensitive chemical sensors—QCMs and molecularly imprinted polymers. Fresenius J. Anal. Chem. 2000, 366, 802–806.

99

Dickert, F. L.; Tortschanoff, M.; Weber, K.; Zenkel, M. Process control with mass-sensitive chemical sensors—Cyclodextrine modified polymers as coatings. Fresenius J. Anal. Chem. 1998, 362, 21–24.

100

Lucklum, R.; Behling, C.; Hauptmann, P. Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors. Anal. Chem. 1999, 71, 2488–2496.

101

Canevali, C.; Mari, C. M.; Mattoni, M.; Morazzoni, F.; Ruffo, R.; Scotti, R.; Russo, U.; Nodari, L. Mechanism of sensing NO in argon by nanocrystalline SnO2: Electron paramagnetic resonance, Mössbauer and electrical study. Sensors Actuators B Chem. 2004, 100, 228–235.

102

Pandian, R. P.; Kim, Y. I.; Woodward, P. M.; Zweier, J. L.; Manoharan, P. T.; Kuppusamy, P. The open molecular framework of paramagnetic lithium octabutoxy-naphthalocyanine: Implications for the detection of oxygen and nitric oxide using EPR spectroscopy. J. Mater. Chem. 2006, 16, 3609–3618.

103

Baldrati, L.; Rinaldi, C.; Manuzzi, A.; Asa, M.; Aballe, L.; Foerster, M.; Biškup, N.; Varela, M.; Cantoni, M.; Bertacco, R. Electrical switching of magnetization in the artificial multiferroic CoFeB/BaTiO3. Adv. Electron. Mater. 2016, 2, 1600085.

104

Piletsky, S. A.; Turner, A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317–323.

DOI
105

Zorn, M. E.; Gibbons, R. D.; Sonzogni, W. C. Evaluation of approximate methods for calculating the limit of detection and limit of quantification. Environ. Sci. Technol. 1999, 33, 2291–2295.

106

Currie, L. A. Detection and quantification limits: Origins and historical overview. Anal. Chim. Acta 1999, 391, 127–134.

107

Davide, F. A. M.; Di Natale, C.; D'Amico, A. Sensor array figures of merit: Definitions and properties. Sensors Actuators B Chem. 1993, 13, 327–332.

108

Yang, Y.; Zhang, H. L.; Chen, J.; Lee, S.; Hou, T. C.; Wang, Z. L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.

109

Moo, J. G. S.; Pumera, M. Chemical energy powered nano/micro/macromotors and the environment. Chem. —Eur. J. 2015, 21, 58–72.

110

Park, J.; Lee, Y.; Ha, M.; Cho, S.; Ko, H. Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. J. Mater. Chem. B 2016, 4, 2999–3018.

111

Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 2016, 6, 1501778.

112

El-hami, M.; Glynne-Jones, P.; White, N. M.; Hill, M.; Beeby, S.; James, E.; Brown, A. D.; Ross, J. N. Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A Phys. 2001, 92, 335–342.

113
Li, W. J.; Wen, Z.; Wong, P. K.; Chan, G. M. H.; Leong, P. H. W. A micro-machined vibration-induced power generator for low power sensors of robotic systems. In Proceedings of the 8th International Symposium on Robotics with Applications, Maui, Hawaii, USA, 2000.
114

Shearwood, C.; Yates, R. B. Development of an electromagnetic micro-generator. Electron. Lett. 1997, 33, 1883–1884.

115

Williams, C. B.; Shearwood, C.; Harradine, M. A.; Mellor, P. H.; Birch, T. S.; Yates, R. B. Development of an electromagnetic micro-generator. IEE Proc. Circuits Devices Syst. 2001, 148, 337–342.

116

Amirtharajah, R.; Chandrakasan, A. P. Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits 1998, 33, 687–695.

117

Umeda, M.; Nakamura, K.; Ueha, S. Energy storage characteristics of a piezo-generator using impact induced vibration. Jpn. J. Appl. Phys. 1997, 36, 3146–3151.

118

Wang, L.; He, T.; Zhang, Z. X.; Zhao, L. B.; Lee, C.; Luo, G. X.; Mao, Q.; Yang, P.; Lin, Q. J.; Li, X. et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy, 2020, 802, 105555.

119

Ross, J. N. Optical power for sensor interfaces. Meas. Sci. Technol. 1992, 3, 651–655.

120

Kuntz, W.; Mores, R. Electrically insulated smart sensors: Principles for operation and supply. Sensors Actuators A Phys. 1991, 26, 497–505.

121

Gross, W. Optical power supply for fiber-optic hybrid sensors. Sensors Actuators A Phys. 1991, 26, 475–480.

122

Lee, J. B.; Chen, Z.; Allen, M. G.; Rohatgi, A.; Arya, R. A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. J. Microelectromech. Syst. 1995, 4, 102–108.

123
van der Woerd, A. C.; Bais, M. A.; de Jong, L. P.; Van Roermund, A. H. M. Highly efficient micro-power converter between a solar cell and a rechargeable lithium-ion battery. In Proceedings Volume 3328, Smart Structures and Materials 1998: Smart Electronics and MEMS, San Diego, CA, USA, 1998, pp 315–325.https://doi.org/10.1117/12.320184
DOI
124

Linder, E. G.; Christian, S. M. The use of radioactive material for the generation of high voltage. J. Appl. Phys. 1952, 23, 1213–1216.

125

Starner, T. Human-powered wearable computing. IBM Syst. J. 1996, 35, 618–629.

126
Stordeur, M.; Stark, I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proceedings of the 16th International Conference on Thermoelectrics, Dresden, Germany, 1997, pp 575–577.
127
Brown, P. M. Apparatus for direct conversion of radioactive decay energy to electrical energy. U. S. Patent 4, 835, 433, May 30, 1989.
128

Kumar, S. Atomic batteries: Energy from radioactivity. J. Nucl. Energy Sci. Power Gener. Technol. 2015, 5, 1–8.

129

Bandodkar, A. J.; Wang, J. Wearable biofuel cells: A review. Electroanalysis 2016, 28, 1188–1200.

130

Zhou, M. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review. Electroanalysis 2015, 27, 1786–1810.

131

Jeerapan, I.; Sempionatto, J. R.; Pavinatto, A.; You, J. M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353.

132

Chen, H. J.; Zhang, M.; Bo, R. H.; Barugkin, C.; Zheng, J. H.; Ma, Q. S.; Huang, S. J.; Ho-Baillie, A. W. Y.; Catchpole, K. R.; Tricoli, A. Superior self-powered room-temperature chemical sensing with light-activated inorganic halides perovskites. Small 2018, 14, 1702571.

133

Gao, C. M.; Yu, H. H.; Wang, Y. H.; Liu, D. Z.; Wen, T.; Zhang, L.; Ge, S. G.; Yu, J. H. Paper-based constant potential electrochemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell. Anal. Chem. 2020, 92, 6822–6826.

134

Kakavelakis, G.; Gagaoudakis, E.; Petridis, K.; Petromichelaki, V.; Binas, V.; Kiriakidis, G.; Kymakis, E. Solution processed CH3NH3PbI3–xClx perovskite based self-powered ozone sensing element operated at room temperature. ACS Sensors 2018, 3, 135–142.

135

Rasmussen, M.; Minteer, S. D. Self-powered herbicide biosensor utilizing thylakoid membranes. Anal. Methods 2013, 5, 1140–1144.

136

He, L. H.; Zhang, Q. S.; Gong, C. L.; Liu, H.; Hu, F. Q.; Zhong, F.; Wang, G. J.; Su, H. H.; Wen, S.; Xiang, S. C. et al. The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sensors Actuators B Chem. 2020, 310, 127842.

137

Wang, Y. H.; Gao, C. M.; Ge, S. G.; Zhang, L.; Yu, J. H.; Yan, M. Self-powered sensing platform equipped with Prussian blue electrochromic display driven by photoelectrochemical cell. Biosens. Bioelectron. 2017, 89, 728–734.

138
Kang, K.; Na, K.; Lee, J. Y.; Parkr, I. Development of NO2 gas sensor using colorimetric film and organic solar cell in self-powered system. In Proceedings of the 17th International Meeting on Chemical Sensors - IMCS 2018, Vienna, Austria, 2018, pp 466–467.https://doi.org/10.5162/IMCS2018/P1AP.16
DOI
139

Hoffmann, M. W. G.; Mayrhofer, L.; Casals, O.; Caccamo, L.; Hernandez-Ramirez, F.; Lilienkamp, G.; Daum, W.; Moseler, M.; Waag, A.; Shen, H. et al. A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes. Adv. Mater. 2014, 26, 8017–8022.

140

Juan, Y. M.; Chang, S. J.; Hsueh, H. T.; Chen, T. C.; Huang, S. W.; Lee, Y. H.; Hsueh, T. J.; Wu, C. L. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sensors Actuators B Chem. 2015, 219, 43–49.

141

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

142

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

143

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

144

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

145

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

146

Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

147

Yang, Y.; Zhang, H. L.; Lin, Z. H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

148

Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

149

Guo, D. Y.; Shan, C. X.; Qu, S. N.; Shen, D. Z. Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films. Sci. Rep. 2014, 4, 7469.

150

Meng, J. P.; Li, H.; Zhao, L. M.; Lu, J. F.; Pan, C. F.; Zhang, Y.; Li, Z. Triboelectric nanogenerator enhanced Schottky nanowire sensor for highly sensitive ethanol detection. Nano Lett. 2020, 20, 4968–4974.

151

Wang, S.; Xie, G. Z.; Tai, H. L.; Su, Y. J.; Yang, B. X.; Zhang, Q. P.; Du, X. S.; Jiang, Y. D. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy 2018, 51, 231–240.

152

Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

153

Gu, D.; Li, X. G.; Wang, H. S.; Li, M. Z.; Xi, Y.; Chen, Y. P.; Wang, J.; Rumyntseva, M. N.; Gaskov, A. M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sensors Actuators B Chem. 2018, 256, 992–1000.

154

Su, Y. J.; Xie, G. Z.; Tai, H. L.; Li, S. D.; Yang, B. X.; Wang, S.; Zhang, Q. P.; Du, H. F.; Zhang, H. L.; Du, X. S. et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316–324.

155

Zhao, K.; Gu, G. Q.; Zhang, Y. N.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M. L.; Cheng, G.; Du, Z. L. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905.

156

Chang, J. Y.; Meng, H.; Li, C. S.; Gao, J. M.; Chen, S. Q.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087.

157

Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

158

Zhu, H. R.; Wang, N.; Xu, Y.; Chen, S. W.; Willander, M.; Cao, X.; Wang, Z. L. Triboelectric nanogenerators based on melamine and self-powered high-sensitive sensors for melamine detection. Adv. Funct. Mater. 2016, 26, 3029–3035.

159

Yu, R. M.; Pan, C. F.; Chen, J.; Zhu, G.; Wang, Z. L. Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 2013, 23, 5868–5874.

160

Zhang, D. Z.; Yang, Z. M.; Li, P.; Pang, M. S.; Xue, Q. Z. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974.

161

Lin, Y. J.; Deng, P.; Nie, Y. X.; Hu, Y. F.; Xing, L. L.; Zhang, Y.; Xue, X. Y. Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 2014, 6, 4604–4610.

162

Zhu, D.; Fu, Y. M.; Zang, W. L.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires. Mater. Lett. 2016, 166, 288–291.

163

Zhao, Y. Y.; Lai, X.; Deng, P.; Nie, Y. X.; Zhang, Y.; Xing, L. L.; Xue, X. Y. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature. Nanotechnology 2014, 25, 115502.

164

Fu, Y. M.; Nie, Y. X.; Zhao, Y. Y.; Wang, P. L.; Xing, L. L.; Zhang, Y.; Xue, X. Y. Detecting liquefied petroleum gas (LPG) at room temperature using ZnSnO3/ZnO nanowire piezo-nanogenerator as self-powered gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 10482–10490.

165

Zang, W. L.; Nie, Y. X.; Zhu, D.; Deng, P.; Xing, L. L.; Xue, X. Y. Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 2014, 118, 9209–9216.

166

Qu, Z.; Fu, Y. M.; Yu, B. W.; Deng, P.; Xing, L. L.; Xue, X. Y. High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sensors Actuators B Chem. 2016, 222, 78–86.

167

Xue, X.; Nie, Y. X.; He, B.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 2013, 24, 225501.

168

Nie, Y. X.; Deng, P.; Zhao, Y. Y.; Wang, P. L.; Xing, L. L.; Zhang, Y.; Xue, X. Y. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor. Nanotechnology 2014, 25, 265501.

169

Zhu, D.; Fu, Y. M.; Zang, W. L.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Piezo/active humidity sensing of CeO2/ZnO and SnO2/ZnO nanoarray nanogenerators with high response and large detecting range. Sensors Actuators B Chem. 2014, 205, 12–19.

170

Modaresinezhad, E.; Darbari, S. Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sensors Actuators B Chem. 2016, 237, 358–366.

171

Zang, W. L.; Wang, W.; Zhu, D.; Xing, L. L.; Xue, X. Y. Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv. 2014, 4, 56211–56215.

172

Fu, Y. M.; He, H. X.; Zhao, T. M.; Dai, Y. T.; Han, W. X.; Ma, J.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018, 10, 76.

173

Selvarajan, S.; Alluri, N. R.; Chandrasekhar, A.; Kim, S. J. BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application. Sensors Actuators B Chem. 2016, 234, 395–403.

174

Abisegapriyan, K. S.; Raj, N. P. M. J.; Alluri, N. R.; Chandrasekhar, A.; Kim, S. J. All in one transitional flow-based integrated self-powered catechol sensor using BiFeO3 nanoparticles. Sensors Actuators B Chem. 2020, 320, 128417.

175

Wang, L. L.; Shao, H. H.; Lu, X. Z.; Wang, W. J.; Zhang, J. R.; Song, R. B.; Zhu, J. J. A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem. Sci. 2018, 9, 8482–8491.

176

Lin, Y. J.; Chen, J. Q.; Tavakoli, M. M.; Gao, Y.; Zhu, Y. D.; Zhang, D. Q.; Kam, M.; He, Z. B.; Fan, Z. Y. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, e1804285.

177

Kim, M. S.; Kim, J. W.; Yun, J.; Jeong, Y. R.; Jin, S. W.; Lee, G.; Lee, H.; Kim, D. S.; Keum, K.; Ha, J. S. A rationally designed flexible self-healing system with a high performance supercapacitor for powering an integrated multifunctional sensor. Appl. Surf. Sci. 2020, 515, 146018.

178

Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R. Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Sensors Actuators B Chem. 2010, 144, 1–5.

179

Tan, H. M.; Manh Hung, C.; Ngoc, T. M.; Nguyen, H.; Duc Hoa, N.; Van Duy, N.; Van Hieu, N. Novel self-heated gas sensors using on-chip networked nanowires with ultralow power consumption. ACS Appl. Mater. Interfaces 2017, 9, 6153–6162.

180

Tsao, Y. H.; Husain, R. A.; Lin, Y. J.; Khan, I.; Chen, S. W.; Lin, Z. H. A self-powered mercury ion nanosensor based on the thermoelectric effect and chemical transformation mechanism. Nano Energy 2019, 62, 268–274.

181

Zheng, C. Z.; Xiang, L. Y.; Jin, W. L.; Shen, H. G.; Zhao, W. R.; Zhang, F. J.; Di, C. A.; Zhu, D. B. A flexible self-powered sensing element with integrated organic thermoelectric generator. Adv. Mater. Technol. 2019, 4, 1900247.

182

He, T.; Shi, Q. F.; Wang, H.; Wen, F.; Chen, T.; Ouyang, J. Y.; Lee, C. Beyond energy harvesting—Multi-functional triboelectric nanosensors on a textile. Nano Energy 2019, 57, 338–352.

183

Dong, B. W.; Shia, Q. F.; Yang, Y. Q.; Wen, F.; Zhang, Z. X.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2020
Revised: 31 December 2020
Accepted: 11 January 2021
Published: 06 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work has been supported by the Ministry of Human Resource Development (MHRD), India, through a Centre of Excellence grant (CENEMA, RP-074) and also by the Department of Science and Technology (DST), India via grant no. DST-MES (RP-155). Part of this work has been carried out with financial support from the National Aluminum Company Limited (NALCO) via grant no. RP-199. C. S. R. acknowledges Department of Science and Technology (DST)-SERB Early Career Research project (No. ECR/2017/001850), DST-Nanomission (DST/NM/NT/2019/205(G)), Karnataka Science and Technology Promotion Society (KSTePS/VGST-RGS-F/2018-19/GRD No. 829/315). S. S. acknowledges the DST-SERB for a National Post-Doctoral Fellowship (No. PDF/2020/000620).

Return