[1]
Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[2]
Chen, Y. W.; Zhang, X.; Chen, H. Y.; Drout, R. J.; Chen, Z. J.; Mian, M. R.; Maldonado, R. R.; Ma, K. K.; Wang, X. K.; Xia, Q. B. et al. Tuning the atrazine binding sites in an indium-based flexible metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 44762-44768.
[3]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[4]
Si, Y. N.; He, X.; Jiang, J.; Duan, Z. M.; Wang, W. J.; Yuan, D. Q. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 2021, 14, 518-525.
[5]
Hou, J. W.; Sutrisna, P. D.; Wang, T. S.; Gao, S.; Li, Q.; Zhou, C.; Sun, S. J.; Yang, H. C.; Wei, F. X.; Ruggiero, M. T. et al. Unraveling the interfacial structure-performance correlation of flexible metal-organic framework membranes on polymeric substrates. ACS Appl. Mater. Interfaces 2019, 11, 5570-5577.
[6]
Qin, J. S.; Yuan, S.; Alsalme, A.; Zhou, H. C. Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates. ACS Appl. Mater. Interfaces 2017, 9, 33408-33412.
[7]
Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-10612.
[8]
Yao, J. F.; Wang, H. T. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470-4493.
[9]
Huang, X. C.; Zhang, J. P.; Chen, X. M. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 2003, 48, 1531-1534.
[10]
Park, K. S.; Ni, Z.; Côté, P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006, 103, 10186-10191.
[11]
Shi, Z. L.; Tao, Y.; Wu, J. S.; Zhang, C. Z.; He, H. L.; Long, L. L.; Lee, Y.; Li, T.; Zhang, Y. B. Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142, 2750-2754.
[12]
Desai, A. V.; Manna, B.; Karmakar, A.; Sahu, A.; Ghosh, S. K. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants. Angew. Chem. 2016, 128, 7942-7946.
[13]
Karmakar, A.; Desai, A. V.; Ghosh, S. K. Ionic metal-organic frameworks (iMOFs): Design principles and applications. Coord. Chem. Rev. 2016, 307, 313-341.
[14]
Wang, L. H.; Ye, Y. X.; Li, Z. Y.; Lin, Q. J.; Ouyang, J.; Liu, L. Z.; Zhang, Z. J.; Xiang, S. C. Highly selective adsorption of C2/C1 mixtures and solvent-dependent thermochromic properties in metal-organic frameworks containing infinite copper-halogen chains. Cryst. Growth Des. 2017, 17, 2081-2089.
[15]
Li, X. X.; Gong, Y. Q.; Zhao, H. X.; Wang, R. H. Anion-directed assemblies of cationic metal-organic frameworks based on 4,4'-bis(1,2,4-triazole): Syntheses, structures, luminescent and anion exchange properties. Inorg. Chem. 2014, 53, 12127-12134.
[16]
Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: Stability, mechanism, and catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 4385-4390.
[17]
Sharma, S.; Desai, A. V.; Joarder, B.; Ghosh, S. K. A water-stable ionic MOF for the selective capture of toxic oxoanions of SeVI and AsV and crystallographic insight into the ion-exchange mechanism. Angew. Chem., Int. Ed. 2020, 59, 7788-7792.
[18]
Li, C. P.; Ai, J. Y.; Zhou, H.; Chen, Q.; Yang, Y. J.; He, H. M.; Du, M. Ultra-highly selective trapping of perrhenate/pertechnetate by a flexible cationic coordination framework. Chem. Commun. 2019, 55, 1841-1844.
[19]
Sumida, K.; Horike, N.; Furukawa, S. Dynamic properties of a flexible metal-organic framework exhibiting a unique “picture frame”-like crystal morphology. Nano Res. 2021, 14, 432-437.
[20]
Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062-6096.
[21]
Zhang, Y. Y.; Zhang, X.; Chen, Z. J.; Otake, K. I.; Peterson, G. W.; Chen, Y. W.; Wang, X. J.; Redfern, L. R.; Goswami, S.; Li, P. et al. A flexible interpenetrated zirconium-based metal-organic framework with high affinity toward ammonia. ChemSusChem 2020, 13, 1710-1714.
[22]
Ehrling, S.; Senkovska, I.; Bon, V.; Evans, J. D.; Petkov, P.; Krupskaya, Y.; Kataev, V.; Wulf, T.; Krylov, A.; Vtyurin, A. et al. Crystal size versus paddle wheel deformability: Selective gated adsorption transitions of the switchable metal-organic frameworks DUT-8(Co) and DUT-8(Ni). J. Mater. Chem. A 2019, 7, 21459-21475.
[23]
McGuirk, C. M.; Runčevski, T.; Oktawiec, J.; Turkiewicz, A.; Taylor, M. K.; Long, J. R. Influence of metal substitution on the pressure-induced phase change in flexible zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2018, 140, 15924-15933.
[24]
Chanut, N.; Ghoufi, A.; Coulet, M. V.; Bourrelly, S.; Kuchta, B.; Maurin, G.; Llewellyn, P. L. Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nat. Commun. 2020, 11, 1216.
[25]
Bloch, W. M.; Babarao, R.; Hill, M. R.; Doonan, C. J.; Sumby, C. J. Post-synthetic structural processing in a metal-organic framework material as a mechanism for exceptional CO2/N2 selectivity. J. Am. Chem. Soc. 2013, 135, 10441-10448.
[26]
Zhang, P. D.; Wu, X. Q.; He, T.; Xie, L. H.; Chen, Q.; Li, J. R. Selective adsorption and separation of C2 hydrocarbons in a “flexible-robust” metal-organic framework based on a guest-dependent gate-opening effect. Chem. Commun. 2020, 56, 5520-5523.
[27]
Zhang, Y. Y.; Zhang, X.; Lyu, J.; Otake, K. I.; Wang, X. J.; Redfern, L. R.; Malliakas, C. D.; Li, Z. Y.; Islamoglu, T.; Wang, B. et al. A flexible metal-organic framework with 4-Connected Zr6 nodes. J. Am. Chem. Soc. 2018, 140, 11179-11183.
[28]
Shi, Y. X.; Li, W. X.; Zhang, W. H.; Lang, J. P. Guest-induced switchable breathing behavior in a flexible metal-organic framework with pronounced negative gas pressure. Inorg. Chem. 2018, 57, 8627-8633.
[29]
Carrington, E. J.; McAnally, C. A.; Fletcher, A. J.; Thompson, S. P.; Warren, M.; Brammer, L. Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 2017, 9, 882-889.
[30]
Huang, Y. K.; Zhang, J.; Yue, D.; Cui, Y. J.; Yang, Y.; Li, B.; Qian, G. D. Solvent-triggered reversible phase changes in two manganese-based metal-organic frameworks and associated sensing events. Chem.—Eur. J. 2018, 24, 13231-13237.
[31]
Choi, H. J.; Dincă, M.; Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 2008, 130, 7848-7850.
[32]
Yan, Y.; O'Connor, A. E.; Kanthasamy, G.; Atkinson, G.; Allan, D. R.; Blake, A. J.; Schröder, M. Unusual and tunable negative linear compressibility in the metal-organic framework MFM-133(M) (M = Zr, Hf). J. Am. Chem. Soc. 2018, 140, 3952-3958.
[33]
Taylor, M. K.; Runčevski, T.; Oktawiec, J.; Bachman, J. E.; Siegelman, R. L.; Jiang, H.; Mason, J. A.; Tarver, J. D.; Long, J. R. Near-perfect CO2/CH4 selectivity achieved through reversible guest templating in the flexible metal-organic framework Co(bdp). J. Am. Chem. Soc. 2018, 140, 10324-10331.
[34]
Gao, Q.; Xu, J.; Cao, D. P.; Chang, Z.; Bu, X. H. A rigid nested metal-organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem., Int. Ed. 2016, 55, 15027-15030.
[35]
Millange, F.; Guillou, N.; Walton, R. I.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, 4732-4734.
[36]
Zhang, C.; Liu, B. S.; Wang, G. M.; Yu, G. L.; Zou, X. Q.; Zhu, G. S. Small-pore CAU-21 and porous PIM-1 in mixed-matrix membranes for improving selectivity and permeability in hydrogen separation. Chem. Commun. 2019, 55, 7101-7104.
[37]
Garai, B.; Bon, V.; Krause, S.; Schwotzer, F.; Gerlach, M.; Senkovska, I.; Kaskel, S. Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange. Chem. Mater. 2020, 32, 889-896.
[38]
Kundu, T.; Wahiduzzaman, M.; Shah, B. B.; Maurin, G.; Zhao, D. Solvent-induced control over breathing behavior in flexible metal-organic frameworks for natural-gas delivery. Angew. Chem., Int. Ed. 2019, 58, 8073-8077.
[39]
Sun, X. D.; Yao, S.; Li, G. H.; Zhang, L. R.; Huo, Q. S.; Liu, Y. L. A flexible doubly interpenetrated metal-organic framework with breathing behavior and tunable gate opening effect by introducing Co2+ into Zn4O Clusters. Inorg. Chem. 2017, 56, 6645-6651.
[40]
He, H. M.; Sun, F. X.; Aguila, B.; Perman, J. A.; Ma, S. Q.; Zhu, G. S. A bifunctional metal-organic framework featuring the combination of open metal sites and lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. J. Mater. Chem. A 2016, 4, 15240-15246.
[41]
Liang, Z. J.; Marshall, M.; Chaffee, A. L. Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia 2009, 1, 1265-1271.
[42]
Yang, L. F.; Cui, X. L.; Zhang, Y. B.; Wang, Q. J.; Zhang, Z. Q.; Suo, X.; Xing, H. B. Anion pillared metal-organic framework embedded with molecular rotors for size-selective capture of CO2 from CH4 and N2. ACS Sustainable Chem. Eng. 2019, 7, 3138-3144.