AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage

Yanyan He1Caifu Dong3Sijia He1Huan Li1Xiuping Sun2Yuan Cheng1Guowei Zhou1( )Liqiang Xu2( )
Key Laboratory of Fine Chemicals in Universities of ShandongSchool of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences)Jinan 250353 China
Key Laboratory of Colloid & Interface ChemistryMinistry of Education and School of Chemistry and Chemical Engineering Shandong UniversityJinan 250100 China
School of Environmental and Material Engineering Yantai UniversityYantai 264005 China
Show Author Information

Graphical Abstract

Abstract

A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method. Among the nickel cobalt sulfides with different Ni/Co contents, the coral-like Ni1.01Co1.99S4 (Ni/Co, 1/2) delivers ultrafast and stable Na-ion storage performance (350 mAh·g−1 after 1, 000 cycles at 1 A·g−1 and 355 mAh·g−1 at 5 A·g−1). The remarkable electrochemical properties can be attributed to the enhanced conductivity by co-existence of bimetallic components, the unique coral-like micro/nanostructure, which could prevent structural collapse and self-aggregation of nanoparticles, and the easily accessibility of electrolyte, and fast Na+ diffusion upon cycling. Detailed kinetics studies by a galvanostatic intermittent titration technique (GITT) reveal the dynamic change of Na+ diffusion upon cycling, and quantitative kinetic analysis indicates the high contribution of pseudocapacitive behavior during charge–discharge processes. Moreover, the ex-situ characterization analysis results further verify the Na-ion storage mechanism based on conversion reaction. This study is expected to provide a feasible design strategy for the bimetallic sulfides materials toward high performance sodium-ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2021_3328_MOESM1_ESM.pdf (4.4 MB)

References

1

Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

2

Hou, X.; Li, C. C.; Xu, H. Y.; Xu, L. Q. NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells. Nano Res. 2017, 10, 3585–3595.

3

Guo, S. H.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew. Chem., Int. Ed. 2015, 54, 11701–11705.

4

Yao, X.; Zhu, Y. F.; Yao, H. R.; Wang, P. F.; Zhang, X. D.; Li, H. L.; Yang, X. N.; Gu, L.; Li, Y. C.; Wang, T. et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978.

5

Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Xu, R. J.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q.; Wu, X. J. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

6

Wu, Y.; Wei, Z. X.; Xu, R.; Gong, Y.; Gu, L.; Ma, J. M.; Yu, Y. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12, 2211–2217.

7

Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, 2004580.

8

Mao, M. L.; Cui, C. Y.; Wu, M. G.; Zhang, M.; Gao, T.; Fan, X. L.; Chen, J.; Wang, T. H.; Ma, J. M.; Wang, C. S. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346–352.

9

Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.

10

Luo, W.; Bommier, C.; Jian, Z. L.; Li, X.; Carter, R.; Vail, S.; Lu, Y. H.; Lee, J. J.; Ji, X. L. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 2015, 7, 2626–2631.

11

Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

12

Ma, Y. F.; Guo, Q. B.; Yang, M.; Wang, Y. H.; Chen, T. T.; Chen, Q.; Zhu, X. H.; Xia, Q. Y.; Li, S.; Xia, H. Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 2018, 13, 134–141.

13

Zhou, X. S.; Guo, Y. G. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 2014, 1, 83–86.

14

Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

15

Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66–95.

16

Zang, R.; Li, P. X.; Guo, X.; Man, Z. M.; Zhang, S. T.; Wang, C. Y.; Wang, G. X. Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 14051–14059.

17

Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289.

18

Dong, C. F.; Guo, L. J.; Li, H. B.; Zhang, B.; Gao, X.; Tian, F.; Qian, Y. T.; Wang, D. B.; Xu, L. Q. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2020, 25, 679–686.

19

Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K. Z.; Guo, P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

20

Chang, X. Q.; Ma, Y. F.; Yang, M.; Xing, T.; Tang, L. Y.; Chen, T. T.; Guo, Q. B.; Zhu, X. H.; Liu, J. Z.; Xia, H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 2019, 23, 358–366.

21

Deng, J.; Gong, Q. F.; Ye, H. L.; Feng, K.; Zhou, J. H.; Zha, C. Y.; Wu, J. H.; Chen, J. M.; Zhong, J.; Li, Y. G. Rational synthesis and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage. ACS Nano 2018, 12, 1829–1836.

22

Jiang, Y. L.; Zou, G. Q.; Hong, W. W.; Zhang, Y.; Zhang, Y.; Shuai, H. L.; Xu, W.; Hou, H. S.; Ji, X. B. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 2018, 10, 18786–18794.

23

Dong, C. F.; Liang, J. W.; He, Y. Y.; Li, C. C.; Chen, X. X.; Guo, L. J.; Tian, F.; Qian, Y. T.; Xu, L. Q. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries. ACS Nano 2018, 12, 8277–8287.

24

Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658–12667.

25

Dong, C. F.; Guo, L. J.; He, Y. Y.; Shang, L. M.; Qian, Y. T.; Xu, L. Q. Ultrafine Co1−xS nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. Nanoscale 2018, 10, 2804–2811.

26

Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

27

Yang, T.; Yang, D. X.; Liu, Y. G.; Liu, J.; Chen, Y. F.; Bao, L.; Lu, X. X.; Xiong, Q. Q.; Qin, H. Y.; Ji, Z. G. et al. MOF-derived carbon- encapsulated cobalt sulfides orostachys-like micro/nano-structures as advanced anode material for lithium ion batteries. Electrochim. Acta 2018, 290, 193–202.

28

Song, Y. J.; Li, H.; Yang, L.; Bai, D. X.; Zhang, F. Z.; Xu, S. L. Solid-solution sulfides derived from tunable layered double hydroxide precursors/graphene aerogel for pseudocapacitors and sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42742–42750.

29

von Lim, Y.; Huang, S. Z.; Hu, J. P.; Kong, D. Z.; Wang, Y.; Xu, T. T.; Ang, L. K.; Yang, H. Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation. Small Methods 2019, 3, 1900112.

30

Fang, Y. J.; Luan, D. Y.; Chen, Y.; Gao, S. Y.; Lou, X. W. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew. Chem., Int. Ed. 2020, 59, 2644–2648.

31

Wu, Y. Q.; Yang, H. X.; Pu, H.; Meng, W. J.; Gao, R. Z.; Zhao, D. L. SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small 2019, 15, 1903873.

32

Zheng, T.; Li, G. D.; Meng, X. G.; Li, S. Y.; Ren, M. M. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries. Chem. —Eur. J. 2019, 25, 885–891.

33

Ali, Z.; Asif, M.; Huang, X. X.; Tang, T. Y.; Hou, Y. L. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 2018, 30, 1802745.

34

He, Y. Y.; Luo, M.; Dong, C. F.; Ding, X. Y.; Yin, C. C.; Nie, A. M.; Chen, Y. N.; Qian, Y. T.; Xu, L. Q. Coral-like NixCo1−xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 2019, 7, 3933–3940.

35

Han, X. P.; Wu, X. Y.; Zhong, C.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017, 31, 541–550.

36

Xie, S. L.; Gou, J. X.; Liu, B.; Liu, C. G. Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorg. Chem. Front. 2018, 5, 1218–1225.

37

Zhu, S. H.; Li, Q. D.; Wei, Q. L.; Sun, R. M.; Liu, X. Q.; An, Q. Y.; Mai, L. Q. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 311–316.

38

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double- shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

39

Zhang, K.; Park, M. H.; Zhou, L. M.; Lee, G. K.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

40

Tang, Y. C.; Zhao, Z. B.; Hao, X. J.; Wang, Y. W.; Liu, Y.; Hou, Y. N.; Yang, Q.; Wang, X. Z.; Qiu, J. S. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 2017, 5, 13591–13600.

41

Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T.; Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

42

Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809.

43

Tao, Y.; Li, R. Y.; Li, Z. J. Facile construction of three-dimensional NiCo2S4 with tremella-like morphology for high-performance supercapacitors. Mater. Lett. 2016, 167, 234–237.

44

Zhou, Q.; Liu, L.; Huang, Z. F.; Yi, L. G.; Wang, X. Y.; Cao, G. Z. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2016, 4, 5505–5516.

45

Sun, Z. H.; Zhao, C. L.; Cao, X. C.; Zeng, K.; Ma, Z. H.; Hu, Y. S.; Tian, J. H.; Yang, R. Z. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochim. Acta 2020, 338, 135900.

46

Guo, C.; Zhang, W. C.; Liu, Y.; He, J. P.; Yang, S.; Liu, M. K.; Wang, Q. H.; Guo, Z. P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1901925.

47

Ou, X.; Cao, L.; Liang, X. H.; Zheng, F. H.; Zheng, H. S.; Yang, X. F.; Wang, J. H.; Yang, C. H.; Liu, M. L. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676.

48

Zhao, W. Q.; Zhang, L. M.; Jiang, F.; Chang, X. H.; Yang, Y.; Ge, P.; Sun, W.; Ji, X. B. Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems. J. Mater. Chem. A 2020, 8, 5284–5297.

49

Zhang, H. C.; Jiang, Y.; Qi, Z. Y.; Zhong, X. W.; Yu, Y. Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 2018, 12, 37–43.

50

He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35–45.

51

An, C. S.; Yuan, Y. F.; Zhang, B.; Tang, L. B.; Xiao, B.; He, Z. J.; Zheng, J. C.; Lu, J. Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 2019, 9, 1900356.

52

Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

53

von Lim, Y.; Huang, S. Z.; Hu, J. P.; Kong, D. Z.; Wang, Y.; Xu, T. T.; Ang, L. K.; Yang, H. Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation. Small Methods 2019, 3, 1900112.

54

Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691–700.

55

Fan, S. W.; Li, G. D.; Cai, F. P.; Yang, G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries. Chem. —Eur. J. 2020, 26, 8579–8587.

56

Zhu, Y. J.; Xu, Y. H.; Liu. Y. H.; Luo, C.; Wang, C. S. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 2013, 5, 780–787.

57

Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

58

Li, C. C.; Zhu, L.; Qi, S. Y.; Ge, W. N.; Ma, W. Z.; Zhao, Y.; Huang, R. Z.; Xu, L. Q.; Qian, Y. T. Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium nitride@N-doped carbon/graphene architecture. ACS Appl. Mater. Interfaces 2020, 12, 49607–49616.

59

He, Y. Y.; Xu, L. Q.; Li, C. C.; Chen, X. X.; Xu, G.; Jiao, X. Y. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. 2018, 11, 3555–3566.

60

Li, S. J.; Ge, P.; Jiang, F.; Shuai, H. L.; Xu, W.; Jiang, Y. L.; Zhang, Y.; Hu, J. G.; Hou, H. S.; Ji, X. B. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 2019, 16, 267–280.

61

Yang, Z. G.; Wu, Z. G.; Hua, W. B.; Xiao, Y.; Wang, G. K.; Liu, Y. X.; Wu, C. J.; Li, Y. C.; Zhong, B. H.; Xiang, W. et al. Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 2020, 7, 1903279.

62

Miao Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041–3047.

63

Lu, F.; Zhou, M.; Li, W. R.; Weng, Q. H.; Li, G. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.

64

Yang, T. T.; Li, R. Y.; Li, Z. J.; Gu, Z. G.; Wang, G. L.; Liu, J. K. Hybrid of NiCo2S4 and nitrogen and sulphur-functionalized multiple graphene aerogel for application in supercapacitors and oxygen reduction with significant electrochemical synergy. Electrochim. Acta 2016, 211, 59–70.

Nano Research
Pages 4014-4024
Cite this article:
He Y, Dong C, He S, et al. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage. Nano Research, 2021, 14(11): 4014-4024. https://doi.org/10.1007/s12274-021-3328-9
Topics:

774

Views

55

Crossref

54

Web of Science

55

Scopus

1

CSCD

Altmetrics

Received: 26 October 2020
Revised: 12 January 2021
Accepted: 13 January 2021
Published: 01 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return