Journal Home > Volume 14 , Issue 11

As the growing criterion of electromagnetic wave (EMW)absorption materials, micro/nano-scale magnetic materials are drawing more and more attention for their unique features compared to bulky absorbers. Generally, the complex permeability of micro/nano-scale magnetic absorbers varies in a relatively narrow range, whatever for the storage of magnetic energy or the dissipation of magnetic energy. If so, how the small variation of permeability affects the ultimate performances is still unclear. Here, a strategy of electromagnetic parameters regulation for the magnetic materials is applied to understand the loss contribution in micro/nano- scale magnetic absorbers. After analyzing the evolution of electromagnetic maps of ten ferrosoferric oxide samples, it can be found that the dissipation contribution of permeability for magnetic materials is weaker than that of permittivity, in spite of its significant role in determining the impedance matching characteristics. In summary, this work systematically explores the loss contribution in micro/nano-magnetic absorbers for the first time, which is of great importance in designing and optimizing the microwave absorption properties of magnetic absorbers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances

Show Author's information Xiaogu Huang1Man Qiao1Xiaochi Lu1Yafei Li3Yabin Ma1Bo Kang1Bin Quan1( )Guangbin Ji4( )
Institute of Advanced Materials and Flexible Electronics (IAMFE) School of Chemistry and Materials Science, Nanjing University of Information Science & TechnologyNanjing 210044 China
College of Electronic and Optical Engineering & College of Microelectronics Nanjing University of Posts and TelecommunicationsNanjing210023 China
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science, Nanjing Normal UniversityNanjing 210023 China
College of Materials Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211100 China

Abstract

As the growing criterion of electromagnetic wave (EMW)absorption materials, micro/nano-scale magnetic materials are drawing more and more attention for their unique features compared to bulky absorbers. Generally, the complex permeability of micro/nano-scale magnetic absorbers varies in a relatively narrow range, whatever for the storage of magnetic energy or the dissipation of magnetic energy. If so, how the small variation of permeability affects the ultimate performances is still unclear. Here, a strategy of electromagnetic parameters regulation for the magnetic materials is applied to understand the loss contribution in micro/nano- scale magnetic absorbers. After analyzing the evolution of electromagnetic maps of ten ferrosoferric oxide samples, it can be found that the dissipation contribution of permeability for magnetic materials is weaker than that of permittivity, in spite of its significant role in determining the impedance matching characteristics. In summary, this work systematically explores the loss contribution in micro/nano-magnetic absorbers for the first time, which is of great importance in designing and optimizing the microwave absorption properties of magnetic absorbers.

Keywords: microwave absorption, impedance matching, dielectric loss, magnetic loss, geometric interference

References(33)

1

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high- performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

2
Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. in press, DOI: 10.1007/s12274-020-3208-8.https://doi.org/10.1007/s12274-020-3208-8
DOI
3

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.

4

Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

5

Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

6

Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357-365.

7

Yan, F.; Guo, D.; Zhang, S.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697-2703.

8

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486-490.

9

Yang, W. Y.; Zhang, Y. F.; Qiao, G. Y.; Lai, Y. F.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Zhang, Y.; Yang, Y. C. et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. Acta Mater. 2018, 145, 331-336.

10

Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe Nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730-3735.

11

Chang, Y. D.; Zhang, Y. N.; Meng, C.; Liu, S. Q.; Chang, H.; Liu, Z. Strong and wide microwave absorption of SrFe12-2xNixRuxO19 enhanced by dislocation stripes. Appl. Phys. Lett. 2020, 116, 082404.

12

Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

13

Wang, X. Y.; Lu, Y. K.; Zhu, T.; Chang, S. C.; Wang, W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317.

14

Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@Ppy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

15

Wu, H. J.; Liu, J. L.; Liang, H. S.; Zang, D. Y. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020, 393, 24743.

16

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

17

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 1996, 6, 15-50.

18

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

19

Perdew, J. P.; Burke, K.; Ernzerhof, K. M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

20

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.

21

Yang, T.; Wen, X. D.; Huo, C. F.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Structure and energetics of hydrogen adsorption on Fe3O4(111). J. Mol. Catal. A: Chem. 2009, 302, 129-136.

22

Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.

23

Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Composites Part A 2020, 135, 105960.

24

Liu, Q. L.; Zhang, D.; Fan, T. X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 2008, 93, 013110.

25

Lu, B.; Huang, H.; Dong, X. L.; Zhang, X. F.; Lei, J. P.; Sun, J. P.; Dong, C. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phys. 2008, 104, 114313.

26

Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932-12942.

27

Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310-320.

28

Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. C. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

29

Li, X. K.; Paier, J. Adsorption of water on the Fe3O4(111) surface: Structures, stabilities, and vibrational properties studied by density functional theory. J. Phys. Chem. C 2016, 120, 1056-1065.

30

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583-4593.

31

Quan, B.; Liang, X. H.; Zhang, X.; Xu, G. Y.; Ji, G. B.; Du, Y. W. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535-41543.

32

Zhao, Z. H.; Zhou, X. J.; Kou, K. C.; Wu, H. J. PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 2021, 173, 80-90.

33

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

File
12274_2021_3327_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright

Publication history

Received: 21 December 2020
Revised: 31 December 2020
Accepted: 11 January 2021
Published: 04 June 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return