Journal Home > Volume 14 , Issue 11

Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact; however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe2(MoO4)3 nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g-1 at a current density of 1 C = 91 mA·g-1 after 1, 000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low-temperature synthesis of Fe2(MoO4)3 nanosheets: A cathode for sodium ion batteries with kinetics enhancement

Show Author's information Ha Tran Huu1N. S. M. Viswanath2Ngoc Hung Vu3,4Jong-Won Lee5( )Won Bin Im1( )
Division of Materials Science and EngineeringHanyang University, 222, Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
School of Materials Science and EngineeringChonnam National University, 77 Yongbong-ro, Buk-guGwangju61186Republic of Korea
Falcuty of BiotechnologyChemistry and Environmental Engineering, Phenikaa UniversityHanoi10000Vietnam
A & A Green Phoenix GroupPhenikaa Research and Technology Institute (PRATI), 167 Hoang NganHanoi10000Vietnam
Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, DalseonggunDaegu42988Republic of Korea

Abstract

Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact; however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe2(MoO4)3 nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g-1 at a current density of 1 C = 91 mA·g-1 after 1, 000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.

Keywords: sodium ion batteries, kinetics, cathode, low-temperature synthesis, Na+ super ionic conductor (NASICON)

References(74)

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science2011, 334, 928-935.

2

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

3

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338-2360.

4

Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310-2340.

5

Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M. I. Prospects in anode materials for sodium ion batteries—A review. Renew. Sust. Energ. Rev. 2020, 119, 109549.

6

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45-56.

7

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.

8

Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744-1751.

9

Dai, Z. F.; Mani, U.; Tan, H. T.; Yan, Q. Y. Advanced cathode materials for sodium-ion batteries: What determines our choices? Small Methods2017, 1, 1700098.

10

Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43, 185-204.

11

Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron- correlated materials. Nat. Mater. 2013, 12, 74-80.

12

Wang, Y.; Li, W.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Gao, H. C.; Du, K.; Goodenough, J. B. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chem. Mater. 2019, 31, 5214-5223.

13

Yang, L. F.; Li, X.; Ma, X. T.; Xiong, S.; Liu, P.; Tang, Y. Z.; Cheng, S.; Hu, Y. Y.; Liu, M. L.; Chen, H. L. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds. J. Power Sources2018, 381, 171-180.

14

Susanto, D.; Cho, M. K.; Ali, G.; Kim, J. Y.; Chang, H. J.; Kim, H. S.; Nam, K. W.; Chung, K. Y. Anionic redox activity as a key factor in the performance degradation of NaFeO2 cathodes for sodium ion batteries. Chem. Mater. 2019, 31, 3644-3651.

15

Qi, S. H.; Wu, D. X.; Dong, Y.; Liao, J. Q.; Foster, C. W.; O'Dwyer, C.; Feng, Y. Z.; Liu, C. T.; Ma, J. M. Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 2019, 370, 185-207.

16

Bucher, N.; Hartung, S.; Franklin, J. B.; Wise, A. M.; Lim, L. Y.; Chen, H. Y.; Weker, J. N.; Toney, M. F.; Srinivasan, M. P2-NaxCoyMn1-yO2 (y = 0, 0. 1) as cathode materials in sodium-ion batteries—Effects of doping and morphology to enhance cycling stability. Chem. Mater. 2016, 28, 2041-2051.

17

Sun, X.; Ji, X. Y.; Xu, H. Y.; Zhang, C. Y.; Shao, Y.; Zang, Y.; Chen, C. H. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochim. Acta2016, 208, 142-147.

18

Pang, W. L.; Zhang, X. H.; Guo, J. Z.; Li, J. Y.; Yan, X.; Hou, B. H.; Guan, H. Y.; Wu, X. L. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sources2017, 356, 80-88.

19

Essehli, R.; Yahia, H. B.; Maher, K.; Sougrati, M. T.; Abouimrane, A.; Park, J. B.; Sun, Y. K.; Al-Maadeed, M. A.; Belharouak, I. Unveiling the sodium intercalation properties in Na1.860.14Fe3(PO4)3. J. Power Sources2016, 324, 657-664.

20

Zhu, X. B.; Mochiku, T.; Fujii, H.; Tang, K. B.; Hu, Y. X.; Huang, Z.; Luo, B.; Ozawa, K.; Wang, L. Z. A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Res. 2018, 11, 6197-6205.

21

Dimov, N.; Nishimura, A.; Chihara, K.; Kitajou, A.; Gocheva, I. D.; Okada, S. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium-ion and sodium-ion batteries. Electrochim. Acta2013, 110, 214-220.

22

Zhou, Y. N.; Sina, M.; Pereira, N.; Yu, X. Q.; Amatucci, G. G.; Yang, X. Q.; Cosandey, F.; Nam, K. W. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 696-703.

23

Hwang, I.; Jung, S. K.; Jeong, E. S.; Kim, H.; Cho, S. P.; Ku, K.; Kim, H.; Yoon, W. S.; Kang, K. NaF-FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Res. 2017, 10, 4388-4397.

24

Xie, B. X.; Zuo, P. J.; Wang, L. G.; Wang, J. J.; Huo, H.; He, M. X.; Shu, J.; Li, H. F.; Lou, S. F.; Yin, G. P. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy2019, 61, 201-210.

25

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

26

Tang, X.; Liu, H.; Su, D. W.; Notten, P. H. L.; Wang, G. X. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979-3990.

27

Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156-160.

28

Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86-89.

29

Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. F. et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 2014, 24, 4265-4272.

30

Subramanian, Y.; Oh, W.; Choi, W.; Lee, H.; Jeong, M.; Thangavel, R.; Yoon, W. S. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 2021, 403, 126291.

31

Park, S.; Song, J. J.; Kim, S.; Sambandam, B.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Kim, J. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Res. 2019, 12, 911-917.

32

Chen, M. Z.; Hua, W. B.; Xiao, J.; Cortie, D.; Guo, X. D.; Wang, E. H.; Gu, Q. F.; Hu, Z.; Indris, S.; Wang, X. L. et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 2449-2456.

33

Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

34

Fang, Y. J.; Chen, Z. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small2018, 14, 1703116.

35

Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q. et al. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. Sci. Rep. 2015, 5, 8810.

36

Heo, J. W.; Hyoung, J.; Hong, S. T. Unveiling the intercalation mechanism in Fe2(MoO4)3 as an electrode material for Na-ion batteries by structural determination. Inorg. Chem. 2018, 57, 11901-11908.

37

Nguyen, V.; Liu, Y. L.; Hakim, S. A.; Yang, S.; Radwan, A. R.; Chen, W. Synthesis and electrochemical performance of Fe2(MoO4)3/RGO nanocomposite cathode material for sodium-ion batteries. Int. J. Electrochem. Sci. 2015, 10, 10565-10575.

38

Nguyen, V.; Liu, Y. L.; Li, Y.; Hakim, S. A.; Yang, X.; Chen, W. Synthesis and electrochemical performance of Fe2(MoO4)3/carbon nanotubes nanocomposite cathode material for sodium-ion battery. ECS J. Solid State Sci. Technol. 2015, 4, M25-M29.

39

Nguyen, V.; Liu, Y.; Yang, X.; Chen, W. S. Fe2(MoO4)3/nanosilver composite as a cathode for sodium-ion batteries. ECS Electrochem. Lett. 2015, 4, A29-A32.

40

Niu, Y. B.; Xu, M. W. Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance. J. Alloys Compd. 2016, 674, 392-398.

41

Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G. B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy2016, 24, 130-138.

42

Nguyen, V. T.; Liu, Y. L.; Hakim, S. A.; Radwan, A. R.; Wei, B.; Chen, W. Synthesis and electrochemical properties of doped Tin Fe2(MoO4)3 as cathode material for sodium-ion batteries. Int. J. Electrochem. Sci. 2017, 12, 3088-3098.

43

Zhou, S. L.; Barim, G.; Morgan, B. J.; Melot, B. C.; Brutchey, R. L. Influence of rotational distortions on Li+- and Na+-intercalation in anti-NASICON Fe2(MoO4)3. Chem. Mater. 2016, 28, 4492-4500.

44

Senthilkumar, B.; Selvan, R. K.; Barpanda, P. Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3. Electrochem. Commun. 2020, 110, 106617.

45

Yadava, Y. P.; Singh, R. A. Electrical properties of iron (Ⅲ) molybdate. J. Mater. Sci. 1987, 22, 2965-2968.

46

Chen, R. J.; Zhao, T. L.; Zhang, X. X.; Li, L.; Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz. 2016, 1, 423-444.

47

Liu, X. H.; Lai, W. H.; Chou, S. L. The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Mater. Chem. Front. 2020, 4, 1289-1303.

48

Huu, H. T.; Im, W. B. Facile green synthesis of pseudocapacitance- contributed ultrahigh capacity Fe2(MoO4)3 as an anode for lithium-ion batteries. ACS Appl. Mater. Interfaces2020, 12, 35152-35163.

49

Kim, S. W.; Hasegawa, T.; Watanabe, M.; Muto, M.; Terashima, T.; Abe, Y.; Kaneko, T.; Toda, A.; Ishigaki, T.; Uematsu, K. et al. Nanophosphors synthesized by the water-assisted solid-state reaction (WASSR) method: Luminescence properties and reaction mechanism of the WASSR method. Appl. Spectros. Rev. 2018, 53, 177-194.

50

Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Report LAUR 86-748, Los Alamos National Laboratory: Los Alamos, NM, 1994.

51

Vu, N. H.; Le, H. T. T.; Hoang, V. H.; Dao, V. D.; Huu, H. T.; Jun, Y. S.; Im, W. B. Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries. J. Alloys Compd. 2020, 851, 156881.

52

Tyagi, A. K.; Achary, S. N.; Mathews, M. D. Phase transition and negative thermal expansion in A2(MoO4)3 system (A = Fe3+, Cr3+, and Al3+). J. Alloys Compd. 2002, 339, 207-210.

53

Lin, S. K. Correlation of entropy with similarity and symmetry. J. Chem. Inf. Comput. Sci. 1996, 36, 367-376.

54

Evans, S. Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis. Surf. Int. Anal. 1997, 25, 924-930.

DOI
55

Taylor, C. E.; Garvey, S. D.; Pemberton, J. E. Carbon contamination at silver surfaces: Surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Anal. Chem. 1996, 68, 2401-2408.

56

Mao, J. F.; Zhou, T. F.; Zheng, Y.; Gao, H.; Liu, H. K.; Guo, Z. P. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A2018, 6, 3284-3303.

57

Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy2017, 2, 17089.

58

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.

59

Liu, W. J.; Shao, D.; Luo, G. E.; Gao, Q. Z.; Yan, G. J.; He, J. R.; Chen, D. Y.; Yu, X. Y.; Fang, Y. P. Mesoporous spinel Li4Ti5O12 nanoparticles for high rate lithium-ion battery anodes. Electrochim. Acta2014, 133, 578-582.

60

Chen, W. N.; Jiang, H.; Hu, Y. J.; Dai, Y. H.; Li, C. Z. Mesoporous single crystals Li4Ti5O12 grown on rGO as high-rate anode materials for lithium-ion batteries. Chem. Commun. 2014, 50, 8856-8859.

61

Jiang, Y. Z.; Zhang, D.; Li, Y.; Yuan, T. Z.; Bahlawane, N.; Liang, C.; Sun, W. P.; Lu, Y. H.; Yan, M. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. NanoEnergy2014, 4, 23-30.

62

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science2014, 343, 1210-1211.

63

Wei, Q. L.; Liu, J.; Feng, W.; Sheng, J. Z.; Tian, X. C.; He, L.; An, Q. Y.; Mai, L. Q. Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A2015, 3, 8070-8075.

64

Ngo, D. T.; Le, H. T. T.; Kim, C.; Lee, J. Y.; Fisher, J. G.; Kim, I. D.; Park, C. J. Mass-scalable synthesis of 3D porous germanium-carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 2015, 8, 3577-3588.

65

Yuan, F. W.; Yang, H. J.; Tuan, H. Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano2012, 6, 9932-9942.

66

He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C. Z.; Cao, X.; Liu, H. D.; Stan, M. C.; Liu, H. D.; Gallash, T. et al. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy2016, 27, 602-610.

67

Crank, J. The Mathematics of Diffusion; Oxford University Press, Oxford, 1979.

68

Wang, Q. Y.; Zhao, B. D.; Zhang, S.; Gao, X. H.; Deng, C. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. J. Mater. Chem. A2015, 3, 7732-7740.

69

Zhu, Y. J.; Wang, C. S. Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C2010, 114, 2830-2841.

70

Böckenfeld, N.; Balducci, A. Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J. Solid State Electrochem. 2014, 18, 959-964.

71

Choi, Y. M.; Pyun, S. I.; Bae, J. S.; Moon, S. I. Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J. Power Sources1995, 56, 25-30.

72

Hong, J. S.; Selman, J. R. Relationship between calorimetric and structural characteristics of lithium-ion cells Ⅱ. determination of Li transport properties. J. Electrochem. Soc. 2000, 147, 3190.

73

Kim, Y. J.; Kim, H.; Kim, B.; Ahn, D.; Lee, J. G.; Kim, T. J.; Son, D.; Cho, J.; Kim, Y. W.; Park, B. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating. Chem. Mater. 2003, 15, 1505-1511.

74

Shi, L.; Zhao, T. S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A2017, 5, 3735-3758.

File
12274_2021_3323_MOESM1_ESM.pdf (6.2 MB)
Publication history
Copyright

Publication history

Received: 30 October 2020
Revised: 28 December 2020
Accepted: 10 January 2021
Published: 06 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return