Journal Home > Volume 14 , Issue 11

Electrochemical conversion reactions provide more selections for Na-storage materials, but the reaction suffers from low reversibility and poor cyclability. Introducing an electrochemically inactive component is a common strategy, but the effect is quite limited since it could not stabilize the structure during long-term cycling. In this study, a new approach is developed using an amino group-functioned hyperbranched polymer (AHP) as a template and electrode additive for the design of high-performance FeSe2-AHP composite with chemical interaction. The assembled FeSe2-AHP composite nanoneedles were prepared by the selenylation of FeS-AHP composite microflowers and entirely inherit the polymer network from the precursor. The amino groups of AHP in composite coordinate with iron cations to achieve uniform polymer dispersion in the composite, and maintain the molecular level mixed state during the long-term cycling. Moreover, the in-situ constructed uniform 3D elastic polymer network effectively accommodates volume expansion and alleviates nanoparticle aggregation during sodiation/de-sodiation. FeSe2-AHP composite provides a superior rate capability (584.8 mAh·g-1 at 20 A·g-1) and a remarkable cyclability with a capacity retention rate of 93.3% after 2, 000 cycles. FeSe2-AHP composite shows a high pseudocapacitive behavior for the abundant nanometer interface established by AHP, enhancing the solid-state Na+ diffusion. The FeSe2-AHP anode is also compatible with Na3V2(PO4)3/C cathode in a full Na-ion battery, which provides a high-power performance (powering 51 LEDs). The work herein highlights an innovative and efficient strategy for conversion-type material design and demonstrates the function of chemical interaction of polymer additive in the enhancement of long-term cyclability for conversion electrode.

File
12274_2021_3320_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright

Publication history

Received: 16 November 2020
Revised: 02 January 2021
Accepted: 10 January 2021
Published: 06 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return