Journal Home > Volume 14 , Issue 11

The energy crisis has always been a widely concerned problem. It is an urgent need for green and renewable energy technologies to achieve sustainable development, and the photo-assisted charging energy storage devices provide a new way to realize the sustainable utilization of solar energy. Here, we fabricated a photo-assisted charging fibrous supercapacitor (NM2P1) with Ti3C2Tx-based hybrid fibre modified by nitrogen-doped carbon dots (NCDs). The NM2P1 fibre provides a volumetric capacitance of 1, 445 F·cm-3 (630 F·g-1) at 10 A·cm-3 under photo-assisted charging, which increases by 35.9% than that of dark condition (1, 063 F·cm-3/ 464 F·g-1). Furthermore, the NM2P1 fibrous supercapacitor device shows that the maximum volumetric energy density and volumetric power density are 18.75 mWh·cm-3 and 8, 382 mW·cm-3. Notably, the transient photovoltage (TPV) test was used to further confirm that NCDs as a photosensitizer enhance the light absorption capacity and faster charge transfer kinetics of NM2P1 fibre. This work directly exploits solar energy to improve the overall performance of supercapacitor, which opens up opportunities for the utilization of renewable energy and the development of photosensitive energy equipment.

File
12274_2021_3309_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 November 2020
Revised: 27 December 2020
Accepted: 03 January 2021
Published: 23 January 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by National MCF Energy R & D Program (No. 2018YFE0306105), the National Key Research and Development Project of China (No. 2020YFA0406104), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202), Natural Science Foundation of Jiangsu Province (No. BK20190041), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Return