AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection

Qingbo Liu1Lihan Liang2Hongzhi Shen2Dehui Li2 ( )Hong Zhou1( )
School of Physics and Electronics Hunan University Changsha 410082 China
School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
Show Author Information

Graphical Abstract

Abstract

Owing to their excellent optoelectronic properties, halide perovskite is very promising for photodetectors and other optoelectronic devices. Perovskite heterostructures are considered to be the key components for these devices. However, it is challenging to rationally synthesize those heterostructures. Here, we demonstrate that perovskite can be epitaxially grown on PbS by vapor transport, thereby creating an interesting CsPbBr3-PbS heterostructure. Remarkably, photodetectors based on CsPbBr3-PbS heterostructures exhibit visible to infrared broadband response with room temperature operation up to 2 μm. The room temperature detectivity higher than 1.0 × 109 Jones was obtained in the 1.8- to 2-μm range. Furthermore, the p-n heterojunction exhibits a clear rectifying characteristic and enables detector to operate at zero-bias. Our study provides fundamentally contributes to establish the epitaxial growth perovskite heterostructures and demonstrate a materials platform for efficient perovskite-based optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3308_MOESM1_ESM.pdf (1.3 MB)

References

1

Sun, H. X.; Tian, W.; Wang, X. F.; Deng, K. M.; Xiong, J.; Li, L. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 2020, 32, 1908108.

2

Tong, J. H.; Song, Z. N.; Kim, D. H.; Chen, X. H.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G. et al. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475– 479.

3

Gong, X. W.; Huang, Z. R.; Sabatini, R.; Tan, C. S.; Bappi, G.; Walters, G.; Proppe, A.; Saidaminov, M. I.; Voznyy, O.; Kelley, S. O. et al. Contactless measurements of photocarrier transport properties in perovskite single crystals. Nat. Commun. 2019, 10, 1591.

4

Chu, W. B.; Zheng, Q. J.; Prezhdo, O. V.; Zhao, J.; Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 2020, 6, eaaw7453.

5

Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.

6

Ono, L. K.; Liu, S.; Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 6676–6698.

7

Chen, Z. L.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X. P.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 2019, 4, 1258–1259.

8

Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

9

Shi, E. Z.; Dou, L. T. Halide perovskite epitaxial heterostructures. Acc. Mater. Res. 2020, 1, 213–224.

10

Lai, M. L.; Obliger, A.; Lu, D.; Kley, C. S.; Bischak, C. G.; Kong, Q.; Lei, T.; Dou, L. T.; Ginsberg, N. S.; Limmer, D. T. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl. Acad. Sci. USA. 2018, 115, 11929–11934.

11

Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

12

Fu, Q. D.; Wang, X. L.; Liu, F. C.; Dong, Y. X.; Liu, Z. R.; Zheng, S. J.; Chaturvedi, A.; Zhou, J. D.; Hu, P.; Zhu, Z. Q. et al. Ultrathin ruddlesden–popper perovskite heterojunction for sensitive photodetection. Small 2019, 15, 1902890.

13

Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct. 2020, 1, 2000009.

14

Dou, L. T.; Lai, M. L.; Kley, C. S.; Yang, Y. M.; Bischak, C. G.; Zhang, D. D.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl. Acad. Sci. USA. 2017, 114, 7216–7221.

15

Worku, M.; Tian, Y.; Zhou, C. K.; Lin, H. R.; Chaaban, M.; Xu, L. J.; He, Q. Q.; Beery, D.; Zhou, Y.; Lin, X. S. et al. Hollow metal halide perovskite nanocrystals with efficient blue emissions. Sci. Adv. 2020, 6, eaaz5961.

16

Zhang, Q. G.; Wang, B.; Zheng, W. L.; Kong, L.; Wan, Q.; Zhang, C. Y.; Li, Z. C.; Cao, X. Y.; Liu, M. M.; Li, L. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11, 31.

17

Zu, Y. Q.; Dai, J. F.; Li, L.; Yuan, F.; Chen, X.; Feng, Z. C.; Li, K.; Song, X. J.; Yun, F.; Yu, Y. et al. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J. Mater. Chem. A 2019, 7, 26116–26122.

18

Zhou, H.; Yuan, S.; Wang, X.; Xu, T.; Wang, X.; Li, H.; Zheng, W.; Fan, P.; Li, Y.; Sun, L. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189–1195.

19

Zeng, J. P.; Meng, C. F.; Li, X. M.; Wu, Y.; Liu, S. T.; Zhou, H.; Wang, H.; Zeng, H. B. Interfacial-tunneling-effect-enhanced CsPbBr3 photodetectors featuring high detectivity and stability. Adv. Funct. Mater. 2019, 29, 1904461.

20

Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525–13532.

21

Jiang, J.; Sun, X.; Chen, X. C.; Wang, B. W.; Chen, Z. Z.; Hu, Y.; Guo, Y. W.; Zhang, L. F.; Ma, Y.; Gao, L. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 2019, 10, 4145.

22

Jin, B.; Zuo, N.; Hu, Z. Y.; Cui, W. J.; Wang, R. Y.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Y. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater. 2020, 30, 2006166.

23

Jung, Y. K.; Butler, K. T.; Walsh, A. Halide perovskite heteroepitaxy: Bond formation and carrier confinement at the PbS–CsPbBr3 interface. J. Phys. Chem. C 2017, 121, 27351–27356.

24

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

25

Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H. et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis–NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.

26

Hu, X. L.; Zhou, H.; Jiang, Z. Y.; Wang, X.; Yuan, S. P.; Lan, J. Y.; Fu, Y. P.; Zhang, X. H.; Zheng, W. H.; Wang, X. X. et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano 2017, 11, 9869–9876.

27

Zhang, H. J.; Liu, X.; Dong, J. P.; Yu, H.; Zhou, C.; Zhang, B. B.; Xu, Y. D.; Jie, W. Q. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 2017, 17, 6426–6431.

28

He, Y. H.; Matei, L.; Jung, H. J.; McCall, K. M.; Chen, M.; Stoumpos, C. C.; Liu, Z. F.; Peters, J. A.; Chung, D. Y.; Wessels, B. W. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 2018, 9, 1609.

29

Tan, L. L.; Liu, Q. B.; Ding, Y. F.; Lin, X. G.; Hu, W.; Cai, M. Q.; Zhou, H. Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition. Nano Res. 2020, 13, 557– 563.

30

Li, J. Z.; Wang, J.; Ma, J. Q.; Shen, H. Z.; Li, L.; Duan, X. F.; Li, D. H. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun. 2019, 10, 806.

31

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

32

Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051–8057.

33

Pak, Y.; Mitra, S.; Alaal, N.; Xin, B.; Lopatin, S.; Almalawi, D.; Min, J. W.; Kim, H.; Kim, W.; Jung, G. Y. et al. Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS2-based photodetector. Appl. Phys. Lett. 2020, 116, 112102.

34

Liu, J. X.; Zou, Y. S.; Huang, B.; Gu, Y.; Yang, Y.; Han, Z. Y.; Zhang, Y. Z.; Xu, X. B.; Zeng, H. B. Sensitively switchable visible/infrared multispectral detection and imaging based on a tandem perovskite device. Nanoscale 2020, 12, 20386–20395.

35

Fang, Y. J.; Huang, J. S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 2015, 27, 2804–2810.

36

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

37

Li, J. Z.; Wang, J.; Zhang, Y. J.; Wang, H. Z.; Lin, G. M.; Xiong, X.; Zhou, W. H.; Luo, H. M.; Li, D. H. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater. 2018, 5, 021001.

38

Fang, Q. Y.; Shang, Q. Y.; Zhao, L. Y.; Wang, R.; Zhang, Z. P.; Yang, P. F.; Sui, X. Y.; Qiu, X. H.; Liu, X. F.; Zhang, Q. et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett. 2018, 9, 1655–1662.

Nano Research
Pages 3879-3885
Cite this article:
Liu Q, Liang L, Shen H, et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Research, 2021, 14(11): 3879-3885. https://doi.org/10.1007/s12274-021-3308-0
Topics:

782

Views

31

Crossref

30

Web of Science

30

Scopus

1

CSCD

Altmetrics

Received: 23 November 2020
Revised: 26 December 2020
Accepted: 29 December 2020
Published: 30 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return