Journal Home > Volume 14 , Issue 11

Synthetic antiferromagnetic (SAF) particles with perpendicular anisotropy display a number of desirable characteristics for applications in biological and other fluid environments. We present an efficient and effective method for the patterning of ultrathin Ruderman-Kittel-Kasuya-Yoshida coupled, perpendicularly magnetised SAFs using a combination of nanosphere lithography and ion milling. A Ge sacrificial layer is utilised, which provides a clean and simple lift-off process, as well as maintaining the key magnetic properties that are beneficial to target applications. We demonstrate that the method is capable of producing a particularly high yield of well-defined, thin film based nanoparticles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-yield fabrication of perpendicularly magnetised synthetic antiferromagnetic nanodiscs

Show Author's information Emma N. Welbourne( )Tarun VemulkarRussell P. Cowburn
Department of PhysicsCavendish LaboratoryUniversity of Cambridge, J. J. Thomson AvenueCambridgeCB3 0HEUK

Abstract

Synthetic antiferromagnetic (SAF) particles with perpendicular anisotropy display a number of desirable characteristics for applications in biological and other fluid environments. We present an efficient and effective method for the patterning of ultrathin Ruderman-Kittel-Kasuya-Yoshida coupled, perpendicularly magnetised SAFs using a combination of nanosphere lithography and ion milling. A Ge sacrificial layer is utilised, which provides a clean and simple lift-off process, as well as maintaining the key magnetic properties that are beneficial to target applications. We demonstrate that the method is capable of producing a particularly high yield of well-defined, thin film based nanoparticles.

Keywords: nanofabrication, perpendicular anisotropy, nanodiscs, synthetic antiferromagnets, sacrificial layers

References(30)

1

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181.

2

Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224001.

3

Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications. Appl. Phys. Lett. 2015, 107, 012403.

4

Kim, D. K.; Zhang, Y.; Voit, W.; Rao, K. V.; Muhammed, M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30–36.

5

Lalatonne, Y.; Richardi, J.; Pileni, M. P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat. Mater. 2004, 3, 121–125.

6

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

7

Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67.

8

Mansell, R.; Vemulkar, T.; Petit, D. C. M. C.; Cheng, Y.; Murphy, J.; Lesniak, M. S.; Cowburn, R. P. Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Sci. Rep. 2017, 7, 4257.

9

Vemulkar, T.; Welbourne, E. N.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P. The mechanical response in a fluid of synthetic antiferromagnetic and ferrimagnetic microdiscs with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2017, 110, 042402.

10

Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618.

11

Parakhonskiy, B.; Zyuzin, M. V.; Yashchenok, A.; Carregal-Romero, S.; Rejman, J.; Möhwald, H.; Parak, W. J.; Skirtach, A. G. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J. Nanobiotechnol. 2015, 13, 53.

12

Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302.

13

Goiriena-Goikoetxea, M.; García-Arribas, A.; Rouco, M.; Svalov, A. V.; Barandiaran, J. M. High-yield fabrication of 60 nm permalloy nanodiscs in well-defined magnetic vortex state for biomedical applications. Nanotechnology 2016, 27, 175302.

14

Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L. J.; Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 1997, 15, 2897–2904.

15

Heidari, B.; Maximov, I.; Sarwe, E. L.; Montelius, L. Large scale nanolithography using nanoimprint lithography. J. Vac. Sci. Technol. B 1999, 17, 2961–2964.

16

Hu, W.; Wilson, R. J.; Koh, A.; Fu, A. H.; Faranesh, A. Z.; Earhart, C. M.; Osterfeld, S. J.; Han, S. J.; Xu, L.; Guccione, S. et al. High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Adv. Mater. 2008, 20, 1479–1483.

17

Hu, W.; Wilson, R. J.; Earhart, C. M.; Koh, A. L.; Sinclair, R.; Wang, S. X. Synthetic antiferromagnetic nanoparticles with tunable susceptibilities. J. Appl. Phys. 2009, 105, 07B508.

18

Tiberto, P.; Barrera, G.; Celegato, F.; Conta, G.; Coïsson, M.; Vinai, F.; Albertini, F. Ni80Fe20 nanodisks by nanosphere lithography for biomedical applications. J. Appl. Phys. 2015, 117, 17B304.

19

Chandramohan, A.; Sibirev, N. V.; Dubrovskii, V. G.; Petty, M. C.; Gallant, A. J.; Zeze, D. A. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Sci. Rep. 2017, 7, 40888.

20

Johnson, M. T.; Bloemen, P. J. H.; den Broeder, F. J. A.; de Vries, J. J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 1996, 59, 1409.

21

Bandiera, S.; Sousa, R. C.; Auffret, S.; Rodmacq, B.; Dieny, B. Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets. Appl. Phys. Lett. 2012, 101, 072410.

22

Ruderman, M. A.; Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 1954, 96, 99–102.

23

Kasuya, T. A theory of metallic ferro- and antiferromagnetism on zener's model. Prog. Theor. Phys. 1956, 16, 45–57.

24

Yosida, K. Magnetic properties of Cu-Mn alloys. Phys. Rev. 1957, 106, 893–898.

25

Bruno, P.; Chappert, C. Ruderman-kittel theory of oscillatory interlayer exchange coupling. Phys. Rev. B 1992, 46, 261–270.

26

Joisten, H.; Courcier, T.; Balint, P.; Sabon, P.; Faure-Vincent, J.; Auffret, S.; Dieny, B. Self-polarization phenomenon and control of dispersion of synthetic antiferromagnetic nanoparticles for biological applications. Appl. Phys. Lett. 2010, 97, 253112.

27

Leulmi, S.; Joisten, H.; Dietsch, T.; Iss, C.; Morcrette, M.; Auffret, S.; Sabon, P.; Dieny, B. Comparison of dispersion and actuation properties of vortex and synthetic antiferromagnetic particles for biotechnological applications. Appl. Phys. Lett. 2013, 103, 132412.

28

Lavrijsen, R.; Fernández-Pacheco, A.; Petit, D.; Mansell, R.; Lee, J. H.; Cowburn, R. P. Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers. Appl. Phys. Lett. 2012, 100, 052411.

29

Lee, J. H.; Mansell, R.; Petit, D.; Fernández-Pacheco, A.; Lavrijsen, R.; Cowburn, R. P. Domain imaging during soliton propagation in a 3D magnetic ratchet. SPIN 2013, 3, 1340013.

30

Moore, T. A.; Miron, I. M.; Gaudin, G.; Serret, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Bonfim, M. High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2008, 93, 262504.

File
12274_2021_3307_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 October 2020
Revised: 08 December 2020
Accepted: 25 December 2020
Published: 25 January 2021
Issue date: November 2021

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work was supported by the European Research Council (No. 779822).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return