AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage

Bi Luo1Peng Wu2Jiafeng Zhang1( )Liang Cao1Chunhui Wang1Bin Lu3Bao Zhang1Xing Ou1( )
National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals School of Metallurgy and Environment Central South University Changsha 410083 China
Key Laboratory on Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
Institute of Advanced Magnetic Materials College of Materials & Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 China
Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2) has received enormous attentions in the electrochemical energy storage due to its unique two-dimensional layered structure and relatively high reversible capacity. However, the application of MoS2 in potassium-ion batteries (PIBs) is restricted by poor rate capability and cyclability, which are associated with the sluggish reaction kinetics and the huge volume expansion during K+ intercalation. Herein, we propose a two-dimensional (2D) space confined strategy to construct van der Waals heterostructure for superior PIB anode, in which the MoS2 nanosheets can be well dispersed on reduced graphene oxide nanosheets by leveraging the confinement effect within the graphene layers and amorphous carbon. The strong synergistic effects in 2D van der Waals heterostructure can extremely promote the electron transportation and ions diffusion during K+ insertion/extraction. More significantly, the 2D space-confinement effect and van der Waals force inhibit polysulfide conversion product dissolution into the electrolyte, which significantly strengthens the structural durability during the long-term cycling process. As anticipated, the as-synthesized the "face-to-face" C/MoS2/G anode delivers remarkable K-storage performance, especially for high reversible capacity (362.5 mAh·g-1 at 0.1 A·g-1), excellent rate capability (195.4 mAh·g-1 at 10 A·g-1) and superior ultrahigh-rate long-cycling stability (126.4 mAh·g-1 after 4000 cycles at high rate of 5 A·g-1). This work presents a promise strategy of structure designing and composition optimization for 2D layered materials in advanced energy storage application.

Electronic Supplementary Material

Download File(s)
12274_2021_3305_MOESM1_ESM.pdf (6.4 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

4

Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

5

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

6

Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

7

An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72.

8

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

9

Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-Shuck-Like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

10

Li, L.; Zhang, W. C.; Wang, X.; Zhang, S. L.; Liu, Y. J.; Li, M. H.; Zhu, G. J.; Zheng, Y.; Zhang, Q.; Zhou, T. F. et al. Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939–7948.

11

Liu, D. Y.; Yang, L.; Chen, Z. Y.; Zou, G. Q.; Hou, H. H.; Hu, J. G.; Ji, X. B. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci. Bull. 2020, 65, 1003–1012.

12

Shen, C.; Cheng, T. L.; Liu, C. Y.; Huang, L.; Cao, M. Y.; Song, G. Q.; Wang, D.; Lu, B. A.; Wang, J. W.; Qin, C. W. et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 2020, 8, 453–460.

13

Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096–1131.

14

Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 107–113.

15

Ou, X.; Cao, L.; Liang, X. H.; Zheng, F. H.; Zheng, H. S.; Yang, X. F.; Wang, J. H.; Yang, C. H.; Liu, M. L. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676.

16

Zhang, J. Y.; Cui, P. X.; Gu, Y.; Wu, D. J.; Tao, S.; Qian, B.; Chu, W. S.; Song, L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage. Adv. Mater. Interfaces 2019, 6, 1901066.

17

Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

18

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

19

Cao, L.; Zhang, B.; Xia, H. F.; Wang, C. H.; Luo, B.; Fan, X. M.; Zhang, J. F.; Ou, X. Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graphene framework for superior potassium-ion storage. Chem. Eng. J. 2020, 387, 124060.

20

Yu, Z. J.; Xie, Y.; Xie, B. X.; Cao, C. T.; Zhang, Z. G.; Huo, H.; Jiang, Z. X.; Pan, Q. M.; Yin, G. P.; Wang, J. J. Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Mater. 2020, 25, 416–425.

21

Hu, X.; Li, Y.; Zeng, G.; Jia, J. C.; Zhan, H. B.; Wen, Z. H. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 2018, 12, 1592–1602.

22

Guo, J. Z.; Sun, X. H.; Shen, K. E.; Li, X.; Zhang, N.; Hou, T. Y.; Fan, A. R.; Jin, S. B.; Hu, X. D.; Li, T. T. et al. Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chem. Eng. J. 2020, 393, 124703.

23

Cui, Y. P.; Liu, W.; Feng, W. T.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Chen, M.; Zhou, J. A. Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: Toward fast potassium storage by constructing spacious "Houses" for K ions. Adv. Funct. Mater. 2020, 30, 1908755.

24

Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 "nano-rose" with expanded interlayers on graphene. Small 2017, 13, 1701471.

25

Wang, P. Y.; Tian, J.; Hu, J. L.; Zhou, X. J.; Li, C. L. Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 2017, 11, 7390–7400.

26

Chong, S. K.; Sun, L.; Shu, C. Y.; Guo, S. W.; Liu, Y. N.; Wang, W.; Liu, H. K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868.

27

Yang, T. Y.; Liang, J.; Sultana, I.; Rahman, M. M.; Monteiro, M. J.; Chen, Y.; Shao, Z. P.; Silva, S. R. P.; Liu, J. Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 2018, 6, 8280–8288.

28

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

29

Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44 (1), 92–96.

30

Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv Mater 2015, 27, 3687–95.

31

McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman, A. L.; Jernigan, G. G.; Jonker, B. T. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449–6454.

32

Wang, X. L.; Li, G.; Seo, M. H.; Hassan, F. M.; Hoque, M. A.; Chen, Z. W. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.

33

Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

34

Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

35

Tang, C.; Zhong, L.; Zhang, B. S.; Wang, H. F.; Zhang, Q. 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 2018, 30, 1705110.

36

Li, H. L.; Yu, K.; Li, C.; Tang, Z.; Guo, B. J.; Lei, X.; Fu, H.; Zhu, Z. Q. Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci. Rep. 2015, 5, 18730.

37

Du, X. Q.; Huang, J. Q.; Guo, X. Y.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Preserved layered structure enables stable cyclic performance of MoS2 upon potassium insertion. Chem. Mater. 2019, 31, 8801–8809.

38

Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2–N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305–9315.

39

Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

40

Wang, J.; Wang, B.; Lu, B. A. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv. Energy Mater. 2020, 10, 2000884.

41

Fan, H. N.; Wang, X. Y.; Yu, H. B.; Gu, Q. F.; Chen, S. L.; Liu, Z.; Chen, X. H.; Luo, W. B.; Liu, H. K. Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 2020, 10, 1904162.

42

Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

43

Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

44

Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.

45

Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

46

Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 2019, 9, 1901560.

47

Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

48

Chen, C. M.; Yang, Y. C.; Tang, X.; Qiu, R. H.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 2019, 15, 1804740.

49

Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.

50

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. T. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem., Int. Ed. 2019, 58, 18108–18115.

51

Wang, B.; Cheng, Y. F.; Su, H.; Cheng, M.; Li, Y.; Geng, H. B.; Dai, Z. F. Boosting transport kinetics of cobalt sulfides yolk-shell spheres by anion doping for advanced lithium and sodium storage. ChemSusChem 2020, 13, 4078–4085.

52

Yang, C.; Lv, F.; Zhang, Y. L.; Wen, J.; Dong, K.; Su, H.; Lai, F. L.; Qian, G. Y.; Wang, W.; Hilger, A. et al. Confined Fe2VO4⊂nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater. 2019, 9, 1902674.

53

Wang, Y. Y.; Hou, B. H.; Yang, X.; Chen, D.; Liang, H. J.; Gu, Z. Y.; Rui, X. H.; Wu, X. L. Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. J. Mater. Chem. A 2020, 8, 9911–9918.

54

Chen, J. W.; Luo, B.; Chen, Q. S.; Li, F.; Guo, Y. J.; Wu, T.; Peng, P.; Qin, X.; Wu, G. X.; Cui, M. Q. et al. Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv. Mater. 2020, 32, 1905578.

55

Fang, G. Z.; Wang, Q. C.; Zhou, J.; Lei, Y. P.; Chen, Z. X.; Wang, Z. Q.; Pan, A. Q.; Liang, S. Q. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645.

56

Li, Y. P.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Liu, T. Z.; Hu, J. H.; Liu, M. L. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 2019, 59, 582–590.

57

Luo, B.; Jiang, B.; Peng, P.; Huang, J. J.; Chen, J. W.; Li, M. C.; Chu, L. H.; Li, Y. F. Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification. Electrochim. Acta 2019, 297, 398–405.

58

Tan, L.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wang, J. X. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 3707–3713.

Nano Research
Pages 3854-3863
Cite this article:
Luo B, Wu P, Zhang J, et al. Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage. Nano Research, 2021, 14(11): 3854-3863. https://doi.org/10.1007/s12274-021-3305-3
Topics:

1114

Views

31

Crossref

32

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 27 July 2020
Revised: 10 September 2020
Accepted: 25 December 2020
Published: 22 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return