Journal Home > Volume 14 , Issue 8

The cyclopentanone and derivatives are a class of crucial fine chemicals for various industries and currently produced by conventional petrochemical synthetic routes. Here, we demonstrated a new synthetic approach to directly fabricate N-doped carbon nanotube (N-CNTs) networks with confined Co nanoparticles from Co2+-impregnated bulk g-C3N4 as high performance hydrogenation rearrangement (HR) catalyst to efficiently convert a wide spectrum of biomass-derived furanic aldehydes to the corresponding cyclopentanones in water under a record-low H2 pressure of 0.5 MPa and mild temperature. We unveiled a Co-catalysed bulk g-C3N4 decomposition/carbonisation CNTs formation mechanism. A new HR pathway was also unveiled.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes

Show Author's information Dongdong Wang1,2Mohammad Al-Mamun3Wanbing Gong1( )Yang Lv1,2Chun Chen1Yue Lin4Guozhong Wang1Haimin Zhang1Huijun Zhao1,3( )
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

Abstract

The cyclopentanone and derivatives are a class of crucial fine chemicals for various industries and currently produced by conventional petrochemical synthetic routes. Here, we demonstrated a new synthetic approach to directly fabricate N-doped carbon nanotube (N-CNTs) networks with confined Co nanoparticles from Co2+-impregnated bulk g-C3N4 as high performance hydrogenation rearrangement (HR) catalyst to efficiently convert a wide spectrum of biomass-derived furanic aldehydes to the corresponding cyclopentanones in water under a record-low H2 pressure of 0.5 MPa and mild temperature. We unveiled a Co-catalysed bulk g-C3N4 decomposition/carbonisation CNTs formation mechanism. A new HR pathway was also unveiled.

Keywords: g-C3N4, carbon nanotubes, Co nanoparticles, hydrogenation rearrangement, furanic aldehydes

References(37)

[1]
Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144-1189.
[2]
Gérardy, R.; Debecker, D. P.; Estager, J.; Luis, P.; Monbaliu, J. C. M. Continuous flow upgrading of selected C2-C6 platform chemicals derived from biomass. Chem. Rev. 2020, 120, 7219-7347.
[3]
Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023-11117.
[4]
Li, G. Y.; Hou, B. L.; Wang, A. Q.; Xin, X. L.; Cong, Y.; Wang, X. D.; Li, N.; Zhang, T. Making JP-10 superfuel affordable with a lignocellulosic platform compound. Angew. Chem., Int. Ed. 2019, 58, 12154-12158.
[5]
Sudarsanam, P.; Zhong, R. Y.; Van Den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349-8402.
[6]
Gong, W. B.; Chen, C.; Zhang, Y.; Zhou, H. J.; Wang, H. M.; Zhang, H. M.; Zhang, Y. X.; Wang, G. Z.; Zhao, H. J. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustainable Chem. Eng. 2017, 5, 2172-2180.
[7]
Gong, W. B.; Chen, C.; Fan, R. Y.; Zhang, H. M.; Wang, G. Z.; Zhao, H. J. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 2018, 231, 165-171.
[8]
Chen, K.; Ling, J. L.; Wu, C. D. In situ generation and stabilization of accessible Cu/Cu2O heterojunctions inside organic frameworks for highly efficient catalysis. Angew. Chem., Int. Ed. 2020, 59, 1925-1931.
[9]
Mironenko, A. V.; Vlachos, D. G. Conjugation-driven “reverse mars-van krevelen”-type radical mechanism for low-temperature C-O bond activation. J. Am. Chem. Soc. 2016, 138, 8104-8113.
[10]
Wang, C. T.; Liu, Z. Q.; Wang, L.; Dong, X.; Zhang, J.; Wang, G. X.; Han, S. C.; Meng, X. J.; Zheng, A. M.; Xiao, F. S. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@zeolite catalysts. ACS Catal. 2018, 8, 474-481.
[11]
Hronec, M.; Fulajtárova, K.; Liptaj, T.; Štolcová, M.; Prónayová, N.; Soták, T. Cyclopentanone: A raw material for production of C15 and C17 fuel precursors. Biomass Bioenerg. 2014, 63, 291-299.
[12]
Renz, M. Ketonization of carboxylic acids by decarboxylation: Mechanism and scope. Eur. J. Org. Chem. 2005, 6, 979-988.
[13]
Deng, Q.; Gao, R.; Li, X.; Wang, J.; Zeng, Z. L.; Zou, J. J.; Deng, S. G. Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies. ACS Catal. 2020, 10, 7355-7366.
[14]
Li, X.; Deng, Q.; Zhou, S. H.; Zou, J. D.; Wang, J.; Wang, R.; Zeng, Z. L.; Deng, S. G. Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds. J. Catal. 2019, 378, 201-208.
[15]
Hronec, M.; Fulajtárová, K.; Vávra, I.; Soták, T.; Dobročka, E.; Mičušík, M. Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl. Catal. B Environ. 2016, 181, 210-219.
[16]
Zhang, G. S.; Zhu, M. M.; Zhang, Q.; Liu, Y. M.; He, H. Y.; Cao, Y. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chem. 2016, 18, 2155-2164.
[17]
Liu, C. Y.; Wei, R. P.; Geng, G. L.; Zhou, M. H.; Gao, L. J.; Xiao, G. M. Aqueous-phase catalytic hydrogenation of furfural over Ni-bearing hierarchical Y zeolite catalysts synthesized by a facile route. Fuel Process. Technol. 2015, 134, 168-174.
[18]
Yang, Y. L.; Du, Z. T.; Huang, Y. Z.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem. 2013, 15, 1932-1940.
[19]
Zhang, S. J.; Ma, H.; Sun, Y. X.; Luo, Y.; Liu, X.; Zhang, M. Y.; Gao, J.; Xu, J. Catalytic selective hydrogenation and rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethyl-cyclopentone over a bimetallic nickel-copper catalyst in water. Green Chem. 2019, 21, 1702-1709.
[20]
Li, X. L.; Deng, J.; Shi, J.; Pan, T.; Yu, C. G.; Xu, H. J.; Fu, Y. Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu-Co catalysts. Green Chem. 2015, 17, 1038-1046.
[21]
Jia, P.; Lan, X. C.; Li, X. D.; Wang, T. F. Highly selective hydrogenation of furfural to cyclopentanone over a NiFe bimetallic catalyst in a methanol/water solution with a solvent effect. ACS Sustainable Chem. Eng. 2019, 7, 15221-15229.
[22]
Wang, Y.; Sang, S. Y.; Zhu, W.; Gao, L. J.; Xiao, G. M. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone. Chem. Eng. J. 2016, 299, 104-111.
[23]
Kumar, T. R.; Kumar, G. G.; Manthiram, A. Biomass-derived 3D carbon aerogel with carbon shell-confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells. Adv. Energy Mater. 2019, 9, 1803238.
[24]
Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829-836.
[25]
Wu, Y. Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.
[26]
Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372-4376.
[27]
Zhang, J. T.; Yu, L.; Lou, X. W. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 2017, 10, 4298-4304.
[28]
Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem., Int. Ed. 2018, 57, 8921-8926.
[29]
Gong, W. B.; Lin, Y.; Chen, C.; Al-Mamun, M.; Lu, H. S.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 2019, 31, 1808341.
[30]
Wang, R. W.; Yan, T. T.; Han, L. P.; Chen, G. R.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction. J. Mater. Chem. A 2018, 6, 5752-5761.
[31]
Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-10401.
[32]
Zhang, X. H.; Lu, P.; Cui, X. Z.; Chen, L. S.; Zhang, C.; Li, M. L.; Xu, Y. F.; Shi, J. L. Probing the electro-catalytic ORR activity of cobalt-incorporated nitrogen-doped CNTs. J. Catal. 2016, 344, 455-464.
[33]
Wei, Z. Z.; Wang, J.; Mao, S. J.; Su, D. F.; Jin, H. Y.; Wang, Y. H.; Xu, F.; Li, H. R.; Wang, Y. In situ-generated Co0-Co3O4/N-Doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783-4789.
[34]
Nie, R. F.; Miao, M.; Du, W. C.; Shi, J. J.; Liu, Y. C.; Hou, Z. Y. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst. Appl. Catal. B Environ. 2016, 180, 607-613.
[35]
Li, C. E.; Wong, L.; Tang, L. G.; Scarlett, N. V. Y.; Chiang, K.; Patel, J.; Burke, N.; Sage, V. Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen. Appl. Catal. A Gen. 2017, 537, 1-11.
[36]
Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212-8221.
[37]
Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923-4928.
File
12274_2021_3298_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2020
Revised: 13 December 2020
Accepted: 15 December 2020
Published: 05 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871209 and 51902311), and the Postdoctoral Science Foundation of China (No. 2019M652223).

Return