Journal Home > Volume 14 , Issue 8

Two-dimensional semiconductors (2DSCs) with appropriate band gaps and high mobilities are highly desired for future-generation electronic and optoelectronic applications. Here, using first-principles calculations, we report a novel class of 2DSCs, group-11-chalcogenide monolayers (M2X, M = Cu, Ag, Au; X = S, Se, Te), featuring with a broad range of energy band gaps and high carrier mobilities. Their energy band gaps extend from 0.49 to 3.76 eV at a hybrid density functional level, covering from ultraviolet-A, visible light to near-infrared region, which are crucial for broadband photoresponse. Significantly, the calculated room-temperature carrier mobilities of the M2X monolayers are as high as thousands of cm2·V-1·s-1. Particularly, the carrier mobilities of η-Au2Se and ε-Au2Te are up to 104 cm2·V-1·s-1, which is very attracitive for electronic devices. Benefitting from the broad range of energy band gaps and superior carrier mobilities, the group-11-chalcogenide M2X monolayers are promising candidates for future-generation nanoelectronics and optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: A broad range of band gaps and high carrier mobilities

Show Author's information Lei Gao1,2Yan-Fang Zhang1Shixuan Du1,3( )
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China
CAS Key Laboratory of Vacuum Physics, Beijing 100049, China

Abstract

Two-dimensional semiconductors (2DSCs) with appropriate band gaps and high mobilities are highly desired for future-generation electronic and optoelectronic applications. Here, using first-principles calculations, we report a novel class of 2DSCs, group-11-chalcogenide monolayers (M2X, M = Cu, Ag, Au; X = S, Se, Te), featuring with a broad range of energy band gaps and high carrier mobilities. Their energy band gaps extend from 0.49 to 3.76 eV at a hybrid density functional level, covering from ultraviolet-A, visible light to near-infrared region, which are crucial for broadband photoresponse. Significantly, the calculated room-temperature carrier mobilities of the M2X monolayers are as high as thousands of cm2·V-1·s-1. Particularly, the carrier mobilities of η-Au2Se and ε-Au2Te are up to 104 cm2·V-1·s-1, which is very attracitive for electronic devices. Benefitting from the broad range of energy band gaps and superior carrier mobilities, the group-11-chalcogenide M2X monolayers are promising candidates for future-generation nanoelectronics and optoelectronics.

Keywords: first-principles calculations, two-dimensional semiconductors, electronic properties, group-11-chalcogenides

References(31)

[1]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[2]
Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[3]
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
[4]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[5]
Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982-1021.
[6]
Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72-133.
[7]
Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
[8]
Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530-534.
[9]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[10]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[11]
Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437-11441.
[12]
Qian, K.; Gao, L.; Chen, X. Y.; Li, H.; Zhang, S.; Zhang, X. L.; Zhu, S. Y.; Yan, J. H.; Bao, D. L.; Cao, L. et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition. Adv. Mater. 2020, 32, 1908314.
[13]
Qian, K.; Gao, L.; Li, H.; Zhang, S.; Yan, J. H.; Liu, C.; Wang, J. O.; Qian, T.; Ding, H.; Zhang, Y. Y. et al. Epitaxial growth and air-stability of monolayer Cu2Te. Chin. Phys. B 2020, 29, 018104.
[14]
Guo, Y.; Wu, Q. S.; Li, Y. H.; Lu, N.; Mao, K. K.; Bai, Y. Z.; Zhao, J. J.; Wang, J. L.; Zeng, X. C. Copper(I) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horiz. 2019, 4, 223-230.
[15]
Wu, Q. S.; Xu, W. W.; Lin, D. D.; Wang, J. L.; Zeng, X. C. Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility. J. Phys. Chem. Lett. 2019, 10, 3773-3778.
[16]
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
[17]
Li, G.; Zhang, Y. Y.; Guo, H.; Huang, L.; Lu, H. L.; Lin, X.; Wang, Y. L.; Du, S. X.; Gao, H. J. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073-6100.
[18]
Zhou, J.; Zhen, X. F. A theoretical perspective of the enhanced photocatalytic properties achieved by forming tetragonal ZnS/ZnSe hetero-bilayer. Phys. Chem. Chem. Phys. 2018, 20, 9950-9956.
[19]
Wang, J. J.; Zhang, M.; Meng, J.; Li, Q. X.; Yang, J. L. Single- and few-layer BiOI as promising photocatalysts for solar water splitting. RSC Adv. 2017, 7, 24446-24452.
[20]
Bruzzone, S.; Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.
[21]
Fiori, G.; Iannaccone, G. Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 2013, 101, 1653-1669.
[22]
Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration. IEEE Trans. Electr. Dev. 1994, 41, 2357-2362.
[23]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
[24]
Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[25]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[26]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[27]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[28]
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.
[29]
Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.
[30]
Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5.
[31]
Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063-4066.
File
12274_2021_3294_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 October 2020
Revised: 09 December 2020
Accepted: 13 December 2020
Published: 05 June 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61888102), the National Key Research and Development Projects of China (No. 2016YFA0202300), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), and the Fundamental Research Funds for the Central Universities.

Return