Journal Home > Volume 14 , Issue 8

Globally, millions of people die of microbial infection-related diseases every year. The more terrible situation is that due to the overuse of antibiotics, especially in developing countries, people are struggling to fight with the bacteria variation. The emergence of super-bacteria will be an intractable environmental and health hazard in the future unless novel bactericidal weapons are mounted. Consequently, it is critical to develop viable antibacterial approaches to sustain the prosperous development of human society. Recent researches indicate that transition metal sulfides (TMSs) represent prominent bactericidal application potential owing to the meritorious antibacterial performance, acceptable biocompatibility, high solar energy utilization efficiency, and excellent photo-to-thermal conversion characteristics, and thus, a comprehensive review on the recent advances in this area would be beneficial for the future development. In this review article, we start with the antibacterial mechanisms of TMSs to provide a preliminary understanding. Thereafter, the state-of-the-art research progresses on the strategies for TMSs materials engineering so as to promote their antibacterial properties are systematically surveyed and summarized, followed by a summary of the practical application scenarios of TMSs-based antibacterial platforms. Finally, based on the thorough survey and analysis, we emphasize the challenges and future development trends in this area.


menu
Abstract
Full text
Outline
About this article

Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents

Show Author's information Hecheng Han1Jingjing Yang1Xiaoyan Li2Yuan Qi1Zhengyi Yang1Zejun Han1Yanyan Jiang1,3,4( )Martina Stenzel5Hui Li1Yixin Yin6( )Yi Du6Jiurong Liu1Fenglong Wang1,4( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan 250012, China
Suzhou Institute of Shandong University, Suzhou 215123, China
ShenZhen Research Institute of Shandong University, Shenzhen 518057, China
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
Oral Implantology Center, Jinan Stomatology Hospital, Jinan 250001, China

Abstract

Globally, millions of people die of microbial infection-related diseases every year. The more terrible situation is that due to the overuse of antibiotics, especially in developing countries, people are struggling to fight with the bacteria variation. The emergence of super-bacteria will be an intractable environmental and health hazard in the future unless novel bactericidal weapons are mounted. Consequently, it is critical to develop viable antibacterial approaches to sustain the prosperous development of human society. Recent researches indicate that transition metal sulfides (TMSs) represent prominent bactericidal application potential owing to the meritorious antibacterial performance, acceptable biocompatibility, high solar energy utilization efficiency, and excellent photo-to-thermal conversion characteristics, and thus, a comprehensive review on the recent advances in this area would be beneficial for the future development. In this review article, we start with the antibacterial mechanisms of TMSs to provide a preliminary understanding. Thereafter, the state-of-the-art research progresses on the strategies for TMSs materials engineering so as to promote their antibacterial properties are systematically surveyed and summarized, followed by a summary of the practical application scenarios of TMSs-based antibacterial platforms. Finally, based on the thorough survey and analysis, we emphasize the challenges and future development trends in this area.

Keywords: surface functionalization, transition metal sulfides, antibacterial mechanisms, strain-selective bactericidal strategies, metabolism and toxicology

References(204)

[1]
Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S. C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 2018, 225, 51-75.
[2]
Kang, Q.; Lu, Q. Z.; Liu, S. H.; Yang, L. X.; Wen, L. F.; Luo, S. L.; Cai, Q. Y. A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia coli. Biomaterials 2010, 31, 3317-3326.
[3]
Rizzello, L.; Pompa, P. P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014, 43, 1501-1518.
[4]
Li, X.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.
[5]
Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525-2533.
[6]
Wang, S. L.; Huang, Q. M.; Liu, X. Y.; Li, Z.; Yang, H.; Lu, Z. Rapid antibiofilm effect of Ag/ZnO nanocomposites assisted by dental led curing light against facultative anaerobic oral pathogen streptococcus mutans. ACS Biomater. Sci. Eng. 2019, 5, 2030-2040.
[7]
Nagay, B. E.; Dini, C.; Cordeiro, J. M.; Ricomini-Filho, A. P.; de Avila, E. D.; Rangel, E. C.; da Cruz, N. C.; Barao, V. A. R. Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth: New perspectives to control implant-biofilm-related diseases. ACS Appl. Mater. Inter. 2019, 11, 18186-18202.
[8]
Di Martino, A.; Sittinger, M.; Risbud, M. V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983-5990.
[9]
Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Wang, X. B.; Chu, P. K.; Wu, S. L. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 2017, 11, 9010-9021.
[10]
Zhao, Y.; Guo, Q. Q.; Dai, X. M.; Wei, X. S.; Yu, Y. J.; Chen, X. L.; Li, C. X.; Cao, Z. Q.; Zhang, X. E. A biomimetic non-antibiotic approach to eradicate drug-resistant infections. Adv. Mater. 2019, 31, 1806024.
[11]
Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020, 13, 496-502.
[12]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309-318.
[13]
Liu, Y.; Shi, L.; Su, L. Z.; van der Mei, H. C.; Jutte, P. C.; Ren, Y. J.; Busscher, H. J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428-446.
[14]
Wang, S.; Xu, M.; Huang, K. W.; Zhi, J. H.; Sun, C.; Wang, K.; Zhou, Q.; Gao, L. L.; Jia, Q. Y.; Shi, H. F. et al. Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Sci. China Mater. 2020, 63, 316-324.
[15]
Zhang, X. D.; Xia, L. Y.; Chen, X. K.; Chen, Z.; Wu, F. G. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci. China Mater. 2017, 60, 487-503.
[16]
Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371-384.
[17]
Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318-1322.
[18]
Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114-122.
[19]
Huang, Y.; Gao, Q.; Li, X.; Gao, Y.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340-2350.
[20]
Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789-799.
[21]
Chen, Z. W.; Ji, H. W.; Liu, C. Q.; Bing, W.; Wang, Z. Z.; Qu, X. G. A multinuclear metal complex based dnase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew. Chem., Int. Ed. 2016, 55, 10732-10736.
[22]
Willyard, C. Drug-resistant bacteria ranked. Nature 2017, 543, 15.
[23]
Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415-427.
[24]
Wang, Y.; Yang, Y.; Shi, Y.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2019, 18, 1904106.
[25]
Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636-1653.
[26]
Rtimi, S.; Dionysiou, D. D.; Pillai, S. C.; Kiwi, J. Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl. Catal. B Environ. 2019, 240, 291-318.
[27]
Foster, H. A.; Ditta, I. B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847-1868.
[28]
Ma, H. B.; Williams, P. L.; Diamond, S. A. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 2013, 172, 76-85.
[29]
Wang, Z. P.; Fang, Y. S.; Zhou, X. F.; Li, Z. B.; Zhu, H. G.; Du, F. L.; Yuan, X.; Yao, Q. F.; Xie, J. P. Embedding ultrasmall ag nanoclusters in luria-bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203-208.
[30]
Shi, Q. B.; Zhang, H. W.; Zhang, H. P.; Zhao, P.; Zhang, Y.; Tang, Y. H. Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation. Sci. China Mater. 2020, 63, 842-850.
[31]
Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 2019, 62, 1727-1739.
[32]
Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389-400.
[33]
AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279-290.
[34]
Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C. H.; Liu, R.; Tolaymat, T.; Telesca, D. et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 2014, 8, 374-386.
[35]
Levard, C.; Hotze, E. M.; Colman, B. P.; Dale, A. L.; Truong, L.; Yang, X. Y.; Bone, A. J.; Brown, G. E., Jr.; Tanguay, R. L.; Di Giulio, R. T. et al. Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, 13440-13448.
[36]
Guo, L. R.; Panderi, I.; Yan, D. D.; Szulak, K.; Li, Y. J.; Chen, Y. T.; Ma, H.; Niesen, D. B.; Seeram, N.; Ahmed, A. et al. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 2013, 7, 8780-8793.
[37]
Qiu, X. Q.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y. et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609-1618.
[38]
Kim, B. C.; Jeong, E.; Kim, E.; Hong, S. W. Bio-organic-inorganic hybrid photocatalyst, TiO2 and glucose oxidase composite for enhancing antibacterial performance in aqueous environments. Appl. Catal. B Environ. 2019, 242, 194-201.
[39]
Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Drosou, C.; Bertakis, Y.; Christofilos, D.; Armatas, G. S.; Sygellou, L.; Schwartz, T.; Xekoukoulotakis, N. P. et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl. Catal. B Environ. 2018, 224, 810-824.
[40]
Ge, P.; Zhang, C. Y.; Hou, H. S.; Wu, B. K.; Zhou, L.; Li, S. J.; Wu, T. J.; Hu, J. G.; Mai, L. Q.; Ji, X. B. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48, 617-629.
[41]
Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.
[42]
Wang, F. L.; Jin, Z. M.; Jiang, Y. J.; Backus, E. H. G.; Bonn, M.; Lou, S. N.; Turchinovich, D.; Amal, R. Probing the charge separation process on In2S3/Pt-TiO2 nanocomposites for boosted visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 2016, 198, 25-31.
[43]
Hu, X. L.; Chu, L. Y.; Dong, X. J.; Chen, C. R.; Tang, T. T.; Chen, D. J.; He, X. P.; Tian, H. Multivalent glycosheets for double light driven therapy of multidrug-resistant bacteria on wounds. Adv. Funct. Mater. 2019, 29, 1806986.
[44]
Hou, S.; Mahadevegowda, S. H.; Van Cuong, M.; Chan-Park, M. B.; Duan, H. Glycosylated copper sulfide nanocrystals for targeted photokilling of bacteria in the near-infrared II window. Adv. Ther. 2019, 2, 1900052.
[45]
Niu, J. S.; Sun, Y. H.; Wang, F. M.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. Photomodulated nanozyme used for a gram-selective antimicrobial. Chem. Mat. 2018, 30, 7027-7033.
[46]
Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761-9771.
[47]
Hao, J. L.; Song, G. S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of pegylated transition-metal dichalcogenides MS2(M = Mo, W, Ti) nanosheets. Adv. Sci. 2017, 4, 1600160.
[48]
Nozik, A. J. Photoelectrochemistry: applications to solar-energy conversion. Annu. Rev. Phys. Chem. 1978, 29, 189-222.
[49]
Han, J. H.; Kwak, M.; Kim, Y.; Cheon, J. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem. Rev. 2018, 118, 6151-6188.
[50]
Ipe, B. I.; Lehnig, M.; Niemeyer, C. M. On the generation of free radical species from quantum dots. Small 2005, 1, 706-709.
[51]
Liu, L.; Sun, M. Q.; Zhang, H. J.; Yu, Q. L.; Li, M. C.; Qi, Y.; Zhang, C. D.; Gao, G. D.; Yuan, Y. J.; Zhai, H. H. et al. Facet energy and reactivity versus cytotoxicity: The surprising behavior of CdS nanorods. Nano Lett. 2016, 16, 688-694.
[52]
Argueta-Figueroa, L.; Martínez-Alvarez, O.; Santos-Cruz, J.; Garcia-Contreras, R.; Acosta-Torres, L. S.; De La Fuente-Hernández, J.; Arenas-Arrocena, M. C. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. Mater. Sci. Eng. C 2017, 76, 1305-1315.
[53]
Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.
[54]
Chen, X.; McDonald, A. R. Functionalization of two-dimensional transition-metal dichalcogenides. Adv. Mater. 2016, 28, 5738-5746.
[55]
Fang, Y. Q.; Pan, J.; He, J. Q.; Luo, R. C.; Wang, D.; Che, X. L.; Bu, K. J.; Zhao, W.; Liu, P.; Mu, G. et al. Structure re-determination and superconductivity observation of bulk 1T MoS2. Angew. Chem., Int. Ed. 2018, 57, 1232-1235.
[56]
Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B Environ. 2016, 192, 101-107.
[57]
Liu, Y.; Liu, M. X.; Swihart, M. T. Reversible crystal phase interconversion between covellite CuS and high chalcocite Cu2S nanocrystals. Chem. Mat. 2017, 29, 4783-4791.
[58]
Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553-3558.
[59]
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
[60]
Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971-6980.
[61]
Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373-1394.
[62]
Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164-175.
[63]
Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun. 2018, 9, 129.
[64]
Budanov, A. V.; Sablina, A. A.; Feinstein, E.; Koonin, E. V.; Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial ahpd. Science 2004, 304, 596-600.
[65]
Dalrymple, O. K.; Stefanakos, E.; Trotz, M. A.; Goswami, D. Y. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 2010, 98, 27-38.
[66]
Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373-399.
[67]
Levy, M.; Chowdhury, P. P.; Nagpal, P. Quantum dot therapeutics: A new class of radical therapies. J. Biol. Eng. 2019, 13, 48.
[68]
Ray, S. K.; Dhakal, D.; Hur, J.; Lee, S. W. Visible light driven MoS2/α-NiMoO4 ultra-thin nanoneedle composite for efficient staphylococcus aureus inactivation. J. Hazard. Mater. 2020, 385, 121553.
[69]
Kim, T. I.; Kwon, B.; Yoon, J.; Park, I. J.; Bang, G. S.; Park, Y.; Seo, Y. S.; Choi, S. Y. Antibacterial activities of graphene oxide molybdenum disulfide nanocomposite films. ACS Appl. Mater. Inter. 2017, 9, 7908-7917.
[70]
Zhang, G. N.; Zhang, X. Y.; Yang, Y. Q.; Chi, R. F.; Shi, J.; Hang, R. Q.; Huang, X. B.; Yao, X. H.; Chu, P. K.; Zhang, X. Y. Dual light-induced in situ antibacterial activities of biocompatible TiO2/MoS2/PDA/RGD nanorod arrays on titanium. Biomater. Sci. 2020, 8, 391-404.
[71]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[72]
Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.
[73]
Wang, F. L.; Ho, J. H.; Jiang, Y. J.; Amal, R. Tuning phase composition of TiO2 by Sn4+ doping for efficient photocatalytic hydrogen generation. ACS Appl. Mater. Inter. 2015, 7, 23941-23948.
[74]
Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331-349.
[75]
Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations - a review. Appl. Catal. B Environ. 2004, 49, 1-14.
[76]
Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997-3027.
[77]
Wang, L. W.; Zhang, X.; Yu, X.; Gao, F. E.; Shen, Z. Y.; Zhang, X. L; Ge, S. G.; Liu, J.; Gu, Z. J.; Chen, C. Y. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv. Mater. 2019, 31, 1901965.
[78]
Waiskopf, N.; Ben-Shahar, Y.; Banin, U. Photocatalytic hybrid semiconductor-metal nanoparticles; from synergistic properties to emerging applications. Adv. Mater. 2018, 30, 1706697.
[79]
Li, Y.; Liu, X. M.; Tan, L.; Cui, Z D.; Jing, D. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F. et al. Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Funct. Mater. 2019, 29, 1900946.
[80]
Wang, F. L.; Jiang, Y. J.; Lawes, D. J.; Ball, G. E.; Zhou, C. F.; Liu, Z. W.; Amal, R. Analysis of the promoted activity and molecular mechanism of hydrogen production over fine Au-Pt alloyed TiO2 photocatalysts. ACS Catal. 2015, 5, 3924-3931.
[81]
Wang, F. L.; Wong, R. J.; Ho, J. H.; Jiang, Y. J.; Amal, R. Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation. ACS Appl. Mater. Inter. 2017, 9, 30575-30582.
[82]
Wang, L. D.; Xu, D.; Gao, J.; Chen, X.; Duo, Y. H.; Zhang, H. Semiconducting quantum dots: Modification and applications in biomedical science. Sci. China Mater. 2020, 63, 1631-1650.
[83]
Wang, F. L.; Jiang, Y. J.; Gautam, A.; Li, Y. R.; Amal, R. Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts. ACS Catal. 2014, 4, 1451-1457.
[84]
Li, Y.; Zhang, W.; Niu, J. F.; Chen, Y. S. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164-5173.
[85]
Liu, Y.; Zeng, X. K.; Hu, X. Y.; Hu, J.; Zhang, X. W. Two-dimensional nanomaterials for photocatalytic water disinfection: Recent progress and future challenges. J. Chem. Technol. Biotechnol. 2019, 94, 22-37.
[86]
Zhang, X. Y.; Zhang, G. N.; Zhang, H. Y.; Liu, X. P.; Shi, J.; Shi, H. X.; Yao, X. H.; Chu, P. K.; Zhang, X. Y. A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing. Chem. Eng. J. 2020, 382.
[87]
Lin, Y. F.; Han, D. L.; Li, Y.; Tan, L.; Liu, X.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Liang, Y. Q.; Zhu, S. L. et al. Ag2S@WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustain. Chem. Eng. 2019, 7, 14982-14990.
[88]
Shang, E. X.; Niu, J. F.; Li, Y.; Zhou, Y. J.; Crittenden, J. C. Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation. Environ. Pollut. 2017, 224, 606-614.
[89]
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[90]
Wu, J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004-1076.
[91]
Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097-1105.
[92]
Cao, F. F.; Zhang, L.; Wang, H.; You, Y. W.; Wang, Y.; Gao, N.; Ren, J. S.; Qu, X. G. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2019, 58, 16236-16242.
[93]
Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W. J.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797-13808.
[94]
Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; Xia, H.; Li, L. H. et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156-2164.
[95]
Masimukku, S.; Hu, Y. C.; Lin, Z. H.; Chan, S. W.; Chou, T. M.; Wu, J. M. High efficient degradation of dye molecules by pdms embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy 2018, 46, 338-346.
[96]
Chou, T. M.; Chan, S. W.; Lin, Y. J.; Yang, P. K.; Liu, C. C.; Lin, Y. J.; Wu, J. M.; Lee, J. T.; Lin, Z. H. A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy 2019, 57, 14-21.
[97]
Tian, Q. W.; Tang, M. H.; Sun, Y. G.; Zou, R. J.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. L.; Hu, J. Q. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542-3547.
[98]
Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. Pegylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal ct/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.
[99]
Li, X.; Shan, J. Y.; Zhang, W. Z.; Su, S.; Yuwen, L. H.; Wang, L. H. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 2017, 13, 28.
[100]
Wang, X. C.; Lv, F.; Li, T.; Han, Y. M.; Yi, Z. F.; Liu, M. Y.; Chang, J.; Wu, C. T. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano 2017, 11, 11337-11349.
[101]
Hsu, S. W.; On, K.; Tao, A. R. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 19072-19075.
[102]
Kriegel, I.; Jiang, C. Y.; Rodríguez-Fernández, J.; Schaller, R. D.; Talapin, D. V.; Da Como, E.; Feldmann, J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583-1590.
[103]
Huang, J. L.; Zhou, J. F.; Zhuang, J. Y.; Gao, H. Z.; Huang, D. H.; Wang, L. X.; Wu, W. L.; Li, Q. B.; Yang, D. P.; Han, M. Y. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of Gram-positive and -negative bacteria. ACS Appl. Mater. Inter. 2017, 9, 36606-36614.
[104]
Chen, J. Q.; Ning, C. Y.; Zhou, Z. N.; Yu, P.; Zhu, Y.; Tan, G. X.; Mao, C. B. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 2019, 99, 1-26.
[105]
Lee, H. P.; Gaharwar, A. K. Light-responsive inorganic biomaterials for biomedical applications. Adv. Sci. 2020, 7, 2000863.
[106]
Zhu, M.; Liu, X. M.; Tan, L.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y.; Wai, K.; Yeung, K.; Wu, S. L. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. J. Hazard. Mater. 2020, 383, 121122.
[107]
Liu, X. Y.; Li, X. Y.; Shan, Y.; Yin, Y. X.; Liu, C. R.; Lin, Z. Y.; Kumar, S. S. CuS nanoparticles anchored to g-C3N4 nanosheets for photothermal ablation of bacteria. RSC Adv. 2020, 10, 12183-12191.
[108]
Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347-12356.
[109]
Li, M.; Li, L. Q.; Su, K.; Liu, X. M.; Zhang, T. J.; Liang, Y. Q.; Jing, D. D.; Yang, X. J.; Zheng, D.; Cui, Z. D. et al. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. 2019, 6, 1900599.
[110]
Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000-11011.
[111]
Sun, W.; Wu, F. G. Two-dimensional materials for antimicrobial applications: Graphene materials and beyond. Chem. Asian J. 2018, 13, 3378-3410.
[112]
Mei, L. Q.; Zhu, S.; Yin, W. Y.; Chen, C. Y.; Nie, G. J.; Gu, Z. J.; Zhao, Y. L. Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics 2020, 10, 757-781.
[113]
Neupane, G. P.; Zhang, L.; Yildirim, T.; Zhou, K.; Wang, B. W.; Tang, Y. L.; Ma, W. D.; Xue, Y. Z.; Lu, Y. R. A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Res. 2020, 13, 1-17.
[114]
Han, W.; Wu, Z. N.; Li, Y.; Wang, Y. Y. Graphene family nanomaterials (GFNs)-promising materials for antimicrobial coating and film: A review. Chem. Eng. J. 2019, 358, 1022-1037.
[115]
Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126-10133.
[116]
Wu, R. R.; Ou, X. W.; Tian, R. R.; Zhang, J.; Jin, H. S.; Dong, M. D.; Li, J. Y.; Liu, L. Membrane destruction and phospholipid extraction by using two-dimensional MoS2 nanosheets. Nanoscale 2018, 10, 20162-20170.
[117]
Roy, S.; Mondal, A.; Yadav, V.; Sarkar, A.; Banerjee, R.; Sanpui, P.; Jaiswal, A. Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: Membrane damage, metabolic inactivation, and oxidative stress. ACS Appl. Bio Mater. 2019, 2, 2738-2755.
[118]
Liu, X.; Duan, G. X.; Li, W. F.; Zhou, Z. F.; Zhou, R. H. Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2). Rsc Adv. 2017, 7, 37873-37880.
[119]
Navale, G. R.; Rout, C. S.; Gohil, K. N.; Dharne, M. S.; Late, D. J.; Shinde, S. S. Oxidative and membrane stress-mediated antibacterial activity of WS2 and RGO-WS2 nanosheets. Rsc Adv. 2015, 5, 74726-74733.
[120]
Hoseinnejad, M.; Jafari, S. M.; Katouzian, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2018, 44, 161-181.
[121]
Cao, F. F.; Ju, E. G.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Huang, Y. Y.; Dong, K.; Ren, J.; Qu, X. G. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 2017, 11, 4651-4659.
[122]
Dobias, J.; Bernier-Latmani, R. Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013, 47, 4140-4146.
[123]
Pang, M. L.; Hu, J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771-10785.
[124]
Addae, E.; Dong, X.; McCoy, E.; Yang, C.; Chen, W.; Yang, L. J. Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells. J.Biol. Eng. 2014, 8, 11.
[125]
Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Flores-López, N. S.; Flores-Acosta, M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull. 2018, 99, 385-392.
[126]
Qiao, Y.; Ping, Y.; Zhang, H. B.; Zhou, B.; Liu, F. Y.; Yu, Y. H.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhang, Y. Z. et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds. ACS Appl. Mater. Inter. 2019, 11, 3809-3822.
[127]
Wang, X. X.; Li, L. Y.; Fu, Z.; Cui, F. L. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance. J. Mol. Liq. 2018, 268, 578-586.
[128]
Wang, W. S.; Cheng, X. H.; Liao, J. W.; Lin, Z. F.; Chen, L. L.; Liu, D. D.; Zhang, T.; Li, L. H.; Lu, Y.; Xia, H. Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu9S8 nanoparticles. ACS Biomater. Sci. Eng. 2019, 5, 6243-6253.
[129]
Xu, Z. B.; Qiu, Z. Y.; Liu, Q.; Huang, Y. X.; Li, D. D.; Shen, X. G.; Fan, K. L.; Xi, J. Q.; Gu, Y. H.; Tang, Y. et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713.
[130]
Wu, N.; Yu, Y. D.; Li, T.; Ji, X. J.; Jiang, L.; Zong, J. J.; Huang, H. Investigating the influence of MoS2 nanosheets on E. coli from metabolomics level. Plos One 2016, 11, e0167245.
[131]
Pandit, S.; Karunakaran, S.; Boda, S. K.; Basu, B.; De, M. High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Inter. 2016, 8, 31567-31573.
[132]
Tian, X.; Sun, Y. R.; Fan, S. H.; Boudreau, M. D.; Chen, C. Y.; Ge, C. C.; Yin, J. J. Photogenerated charge carriers in molybdenum disulfide quantum dots with enhanced antibacterial activity. ACS Appl. Mater. Inter. 2019, 11, 4858-4866.
[133]
Liu, C.; Kong, D.; Hsu, P. C.; Yuan, H. T.; Lee, H. W.; Liu, Y. Y.; Wang, H. T.; Wang, S.; Yan, K.; Lin, D. C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 2016, 11, 1098-1104.
[134]
Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R. Functionalization of two-dimensional MoS2: On the reaction between MoS2 and organic thiols. Angew.Chem., Inter. Ed. 2016, 55, 5803-5808.
[135]
Wang, W. J.; Li, G. Y.; Xia, D. H.; An, T. C.; Zhao, H. J.; Wong, P. K. Photocatalytic nanomaterials for solar-driven bacterial inactivation: Recent progress and challenges. Environ. Sci. Nano 2017, 4, 782-799.
[136]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der waals heterostructures. Science 2016, 353, aac9439.
[137]
Wang, F. L.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Nanba, Y.; Koyama, M.; Kitagawa, H. Solid-solution alloy nanoparticles of the immiscible iridium-copper system with a wide composition range for enhanced electrocatalytic applications. Angew. Chem., Int. Ed. 2018, 57, 4505-4509.
[138]
Wang, H. Y.; Hua, X. W.; Wu, F. G.; Li, B. L.; Liu, P. D.; Gu, N.; Wang, Z. F.; Chen, Z. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: Potential anticancer and antibacterial applications. ACS Appl. Mater. Inter. 2015, 7, 7082-7092.
[139]
Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.
[140]
Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.
[141]
He, X.; Singh, D. J.; Boon-On, P.; Lee, M. W.; Zhang, L. J. Dielectric behavior as a screen in rational searches for electronic materials: Metal pnictide sulfosalts. J. Am. Chem. Soc. 2018, 140, 18058-18065.
[142]
Cheng, P. F.; Zhou, Q. W.; Hu, X. B.; Su, S. Q.; Wang, X.; Jin, M. L.; Shui, L. L.; Gao, X. S.; Guan, Y. Q.; Nozel, R. et al. Transparent glass with the growth of pyramid-type MoS2 for highly efficient water disinfection under visible-light irradiation. ACS Appl. Mater. Inter. 2018, 10, 23444-23450.
[143]
Karunakaran, S.; Pandit, S.; Basu, B.; De, M. Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: Applications in enhanced antibacterial activity. J. Am. Chem. Soc. 2018, 140, 12634-12644.
[144]
Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. G.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Inter. 2017, 9, 30470-30479.
[145]
Gabriel, G. J.; Maegerlein, J. A.; Nelson, C. F.; Dabkowski, J. M.; Eren, T.; Nüsslein, K.; Tew, G. N. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chem. Eur. J 2009, 15, 433-439.
[146]
Nguyen, E. P.; Carey, B. J.; Ou, J. Z.; van Embden, J.; Della Gaspera, E.; Chrimes, A. F.; Spencer, M. J. S.; Zhuiykov, S.; Kalantar-zadeh, K.; Daeneke, T. Electronic tuning of 2D MoS2 through surface functionalization. Adv. Mater. 2015, 27, 6225-6229.
[147]
Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.
[148]
Gao, Q.; Zhang, X.; Yin, W. Y.; Ma, D. Q.; Xie, C. J.; Zheng, L. R.; Dong, X. H.; Mei, L. Q.; Yu, J.; Wang, C. Z. et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290.
[149]
Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese J. Catal. 2019, 40, 289-319.
[150]
Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.
[151]
Zhang, X. Y.; Zhang, C.; Yang, Y. Q.; Zhang, H. Y.; Huang, X. B.; Hang, R. Q.; Yao, X. H. Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chem. Eng. J. 2019, 374, 596-604.
[152]
Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.
[153]
Baek, M.; Kim, E. J.; Hong, S. W.; Kim, W.; Yong, K. Environmentally benign synthesis of CuInS2/ZnO heteronanorods: Visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism. Photochem. Photobiol. Sci. 2017, 16, 1792-1800.
[154]
Meng, X. C.; Li, Z. Z.; Zeng, H. M.; Chen, J.; Zhang, Z. S. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Appl. Catal. B Environ. 2017, 210, 160-172.
[155]
Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042-1063.
[156]
Bard, A. J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J. Photochem. 1979, 10, 59-75.
[157]
Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.
[158]
Low, J. X.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.
[159]
Li, Y. R.; Li, L. L.; Gong, Y. Q.; Bai, S.; Ju, H. X.; Wang, C. M.; Xu, Q.; Zhu, J. F.; Jiang, J.; Xiong, Y. J. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Res. 2015, 8, 3621-3629.
[160]
Chen, Y. X.; Liang, Y.; Zhao, M. J.; Wang, Y.; Zhang, L.; Jiang, Y. Y.; Wang, G. T.; Zou, P.; Zeng, J.; Zhang, Y. S. In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency. Ind. Eng. Chem. Res. 2019, 58, 3538-3548.
[161]
Zhang, C.; Wang, J. M.; Chi, R. F.; Shi, J.; Yang, Y. Q.; Zhang, X. Y. Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties. Mater. Des. 2019, 183, 108166.
[162]
Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 2019, 11, 1394-1411.
[163]
Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.
[164]
Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274-5309.
[165]
Zhang, X. M.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401.
[166]
Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
[167]
Wu, L.; Li, F.; Xu, Y. Y.; Zhang, J. W.; Zhang, D. Q.; Li, G. S.; Li, H. X. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl. Catal. B Environ. 2015, 164, 217-224.
[168]
Zeng, S. W.; Baillargeat, D.; Ho, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426-3452.
[169]
Yang, J. J.; Wang, F. L.; Yuan, H. Q.; Zhang, L. S.; Jiang, Y. Y.; Zhang, X.; Liu, C.; Chai, L.; Li, H.; Stenzel, M. Recent advances in ultra-small fluorescent Au nanoclusters toward oncological research. Nanoscale 2019, 11, 17967-17980.
[170]
Gupta, R.; Eswar, N. K.; Modak, J. M.; Madras, G. Effect of morphology of zinc oxide in ZnO-CdS-Ag ternary nanocomposite towards photocatalytic inactivation of E. coli under UV and visible light. Chem. Eng. J. 2017, 307, 966-980.
[171]
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.
[172]
Tang, K. W.; Wang, L. Y.; Geng, H.; Qiu, J. J.; Cao, H. L.; Liu, X. Y. Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arab. J. Chem. 2020, 13, 1612-1623.
[173]
Fakhri, A.; Pourmand, M.; Khakpour, R.; Behrouz, S. Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles. J. Photochem. Photobiol. B Biol. 2015, 149, 78-83.
[174]
Patel, N. H.; Deshpande, M. P.; Chaki, S. H.; Keharia, H. R. Tuning of optical, thermal and antimicrobial capabilities of CdS nanoparticles with incorporated Mn prepared by chemical method. J. Mater. Sci. Mater. Electron. 2017, 28, 10866-10876.
[175]
Ristic, B. Z.; Milenkovic, M. M.; Dakic, I. R.; Todorovic-Markovic, B. M.; Milosavljevic, M. S.; Budimir, M. D.; Paunovic, V. G.; Dramicanin, M. D.; Markovic, Z. M.; Trajkovic, V. S. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 2014, 35, 4428-4435.
[176]
Li, R. B.; Mansukhani, N. D.; Guiney, L. M.; Ji, Z. X.; Zhao, Y. C.; Chang, C. H.; French, C. T.; Miller, J. F.; Hersam, M. C.; Nel, A. E. et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano 2016, 10, 10966-10980.
[177]
Liu, S. B.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R. R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364-12372.
[178]
Rajendiran, K.; Zhao, Z. Z.; Pei, D. S.; Fu, A. L. Antimicrobial activity and mechanism of functionalized quantum dots. Polymers 2019, 11, 1670.
[179]
Han, D. L.; Ma, M. X.; Han, Y. J.; Cui, Z. D.; Liang, Y. Q.; Liu, X. M.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. Eco-friendly hybrids of carbon quantum dots modified MoS2 for rapid microbial inactivation by strengthened photocatalysis. ACS Sustain. Chem. Eng. 2020, 8, 534-542.
[180]
Wang, W. N.; Zhang, C. Y.; Zhang, M. F.; Pei, P.; Zhou, W.; Zha, Z. B.; Shao, M.; Qian, H. S. Precisely photothermal controlled releasing of antibacterial agent from Bi2S3 hollow microspheres triggered by nir light for water sterilization. Chem. Eng. J. 2020, 381, 122630.
[181]
Zhang, G.; Zhang, Z. H.; Xia, D. H.; Qu, Y.; Wang, W. Q. Solar driven self-sustainable photoelectrochemical bacteria inactivation in scale-up reactor utilizing large-scale fabricable Ti/MoS2/MoOx photoanode. J. Hazard. Mater. 2020, 392, 122292.
[182]
Gao, P.; Liu, J.; Sun, D. D.; Ng, W. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250, 412-420.
[183]
Li, W. P.; Su, C. H.; Wang, S. J.; Tsai, F. J.; Chang, C. T.; Liao, M. C.; Yu, C. C.; Thi-Tuong Vi, T.; Lee, C. N.; Chiu, W. T. et al. CO2 delivery to accelerate incisional wound healing following single irradiation of near-infrared lamp on the coordinated colloids. ACS Nano 2017, 11, 5826-5835.
[184]
Agarwal, V.; Chatterjee, K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale 2018, 10, 16365-16397.
[185]
Yuwen, L. H.; Sun, Y. T.; Tan, G. L.; Xiu, W. J.; Zhang, Y. Q.; Weng, L. X.; Teng, Z. G.; Wang, L. H. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale 2018, 10, 16711-16720.
[186]
Yuan, Z.; Tao, B. L.; He, Y.; Liu, J.; Lin, C. C.; Shen, X. K.; Ding, Y.; Yu, Y. L.; Mu, C. Y.; Liu, P. et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and nir irradiation. Biomaterials 2019, 217, 119290.
[187]
Feng, Z. Z.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 2018, 14, 1704347.
[188]
Shalabayev, Z.; Baláž, M.; Daneu, N.; Dutková, E.; Bujňáková, Z.; Kanuchová, M.; Danková, Z.; Balážová, Ĺ.; Urakaev, F.; Tkaciková, Ĺ. et al. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity. ACS Sustain. Chem. Eng. 2019, 7, 12897-12909.
[189]
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015, 115, 525-561.
[190]
Novoa, A.; Eierhoff, T.; Topin, J.; Varrot, A.; Barluenga, S.; Imberty, A.; Römer, W.; Winssinger, N. A leca ligand identified from a galactoside-conjugate array inhibits host cell invasion by pseudomonas aeruginosa. Angew. Chem., Int. Ed. 2014, 53, 8885-8889.
[191]
Lundquist, J. J.; Toone, E. J. The cluster glycoside effect. Chem. Rev. 2002, 102, 555-578.
[192]
Bernardi, A.; Jiménez-Barbero, J.; Casnati, A.; De Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K. E.; Lahmann, M. et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013, 42, 4709-4727.
[193]
Versteeg, H. H.; Heemskerk, J. W. M.; Levi, M.; Reitsma, P. H. New fundamentals in hemostasis. Physiol. Rev. 2013, 93, 327-358.
[194]
Li, J.; Tan, L.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 2017, 11, 11250-11263.
[195]
Midwood, K. S.; Williams, L. V.; Schwarzbauer, J. E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 2004, 36, 1031-1037.
[196]
Chang, H. Y.; Sneddon, J. B.; Alizadeh, A. A.; Sood, R.; West, R. B.; Montgomery, K.; Chi, J. T.; van de Rijn, M.; Botstein, D.; Brown, P. O. Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biol. 2004, 2, 206-214.
[197]
Li, M.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zheng, Y. F.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater. Sci. 2018, 6, 2110-2121.
[198]
Su, K.; Tan, L.; Liu, X. M.; Cui, Z. D.; Zheng, Y. F.; Li, B.; Han, Y.; Li, Z. Y.; Zhu, S. L.; Liang, Y. Q. et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 2020, 14, 2077-2089.
[199]
Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science 2002, 295, 1014-1017.
[200]
Lee, C. T.; Huang, Y. W.; Zhu, L.; Weltman, R. Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. J. Dent. 2017, 62, 1-12.
[201]
Zhu, W. D.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Yeung, K. W. K.; Wu, S. L. AgBr nanoparticles in situ growth on 2D MoS2 nanosheets for rapid bacteria-killing and photodisinfection. ACS Appl. Mater. Inter. 2019, 11, 34364-34375.
[202]
Awasthi, G. P.; Adhikari, S. P.; Ko, S.; Kim, H. J.; Park, C. H.; Kim, C. S. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloys Compd. 2016, 682, 208-215.
[203]
Shariati, M. R.; Samadi-Maybodi, A.; Colagar, A. H. Exploration of charge carrier delocalization in the iron oxide/CdS type-ii heterojunction band alignment for enhanced solar-driven photocatalytic and antibacterial applications. J. Hazard. Mater. 2019, 366, 475-481.
[204]
Gao, P.; Liu, J. C.; Zhang, T.; Sun, D. D.; Ng, W. Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J. Hazard. Mater. 2012, 229, 209-216.
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2020
Revised: 10 December 2020
Accepted: 13 December 2020
Published: 21 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21902085 and 51572157), the Natural Science Foundation of Shandong Province (Nos. ZR2019QF012 and ZR2019BEM024), Shenzhen Fundamental Research Program (Nos. JCYJ20190807093205660 and JCYJ20190807092803583), the Natural Science Foundation of Jiangsu Province (No. BK20190205), and the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110846), the Fundamental Research Funds for the Central Universities (Nos. 2018JC046 and 2018JC047), Medical and Health Science and Technology Development Project of Shandong Province (No. 2018WSA01018), Science Development Program Project of Jinan (No. 201805048), the Dean’s Research Assistance Foundation of Ji Nan Stomatology Hospital (2018-02) and the Qilu Young Scholar Program of Shandong University (Nos. 31370088963043 and 31370088963056).

Return