Journal Home > Volume 14 , Issue 5

Porous carbon spheres with an internal gridded hollow structure and microporous shell have always been attractive as carbon hosts for electrochemical energy storage. Such carbon hosts can limit active species loss and enhance electronic conductivity throughout the entire framework. Herein, a synthesis approach of internal gridded hollow carbon spheres is developed from solid polymer spheres rather than originally gridded polymer spheres under a controlled pyrolysis micro-environment. The crucial point of this approach is the fabrication of a silica fence around solid polymer spheres, under which the free escaping of the pyrolysis gas will be partly impeded, thus offering a reconstitution opportunity for an internal structure of solid polymer spheres. As a result, the interior of carbon spheres is sculptured into a gridded hollow structure with microporous skin. Furthermore, the size and density of carbon-bridge grids can be modulated by altering the crosslinking degree of polymer spheres and varying pyrolysis conditions. Such gridded hollow carbon spheres show good performance as sulfur hosts for Li-S battery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment

Show Author's information Xiao-Fei YuWen-Cui LiYou-Ren HuCheng-Yu YeAn-Hui Lu( )
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Porous carbon spheres with an internal gridded hollow structure and microporous shell have always been attractive as carbon hosts for electrochemical energy storage. Such carbon hosts can limit active species loss and enhance electronic conductivity throughout the entire framework. Herein, a synthesis approach of internal gridded hollow carbon spheres is developed from solid polymer spheres rather than originally gridded polymer spheres under a controlled pyrolysis micro-environment. The crucial point of this approach is the fabrication of a silica fence around solid polymer spheres, under which the free escaping of the pyrolysis gas will be partly impeded, thus offering a reconstitution opportunity for an internal structure of solid polymer spheres. As a result, the interior of carbon spheres is sculptured into a gridded hollow structure with microporous skin. Furthermore, the size and density of carbon-bridge grids can be modulated by altering the crosslinking degree of polymer spheres and varying pyrolysis conditions. Such gridded hollow carbon spheres show good performance as sulfur hosts for Li-S battery.

Keywords: gridded hollow structure, pyrolysis micro-environment, porous carbon spheres, solid polymer spheres

References(48)

[1]
F. Xu,; Z. W. Tang,; S. Q. Huang,; L. Y. Chen,; Y. R. Liang,; W. C. Mai,; H. Zhong,; R. W. Fu,; D. C. Wu, Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221.
[2]
W. D. Zhou,; C. M. Wang,; Q. L. Zhang,; H. D. Abruña,; Y. He,; J. W. Wang,; S. X. Mao,; X. C. Xiao, Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.
[3]
A. D. Roberts,; X. Li,; H. F. Zhang, Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341-4356.
[4]
M. Inagaki,; C. R. Park,; J. M. Skowronski,; A. W. Morawski, Glass-like carbon spheres-activation, porosity and application possibilities. Adsorpt. Sci. Technol. 2008, 26, 735-787.
[5]
G. H. Wang,; J. Hilgert,; F. H. Richter,; F. Wang,; H. J. Bongard,; B. Spliethoff,; C. Weidenthaler,; F. Schüth, Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 2014, 13, 293-300.
[6]
R. P. Ye,; X. Y. Wang,; C. A. H. Price,; X. Y. Liu,; Q. H. Yang,; M. Jaroniec,; J. Liu, Engineering of yolk/core-shell structured nanoreactors for thermal hydrogenations. Small, in press, .
[7]
L. M. Wang,; Q. Sun,; X. Wang,; T. Wen,; J. J. Yin,; P. Y. Wang,; R. Bai,; X. Q. Zhang,; L. H. Zhang,; A. H. Lu, et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947-1955.
[8]
C. J. Hofer,; R. N. Grass,; M. Zeltner,; C. A. Mora,; F. Krumeich,; W. J. Stark, Hollow carbon nanobubbles: Synthesis, chemical functionalization, and container-type behavior in water. Angew. Chem., Int. Ed. 2016, 55, 8761-8765.
[9]
J. Liu,; N. P. Wickramaratne,; S. Z. Qiao,; M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763-774.
[10]
J. Qi,; X. Y. Lai,; J. Y. Wang,; H. J. Tang,; H. Ren,; Y. Yang,; Q. Jin,; L. J. Zhang,; R. B. Yu,; G. H. Ma, et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749-6773.
[11]
H. W. Zhang,; M. H. Yu,; H. Song,; O. Noonan,; J. Zhang,; Y. N. Yang,; L. Zhou,; C. Z. Yu, Self-organized mesostructured hollow carbon nanoparticles via a surfactant-free sequential heterogeneous nucleation pathway. Chem. Mater. 2015, 27, 6297-6304.
[12]
Z. C. Sun,; F. Bai,; H. M. Wu,; S. K. Schmitt,; D. M. Boye,; H. Y. Fan, Hydrogen-bonding-assisted self-assembly: Monodisperse hollow nanoparticles made easy. J. Am. Chem. Soc. 2009, 131, 13594-13595.
[13]
K. W. Wang,; L. Huang,; S. Razzaque,; S. B. Jin,; B. E. Tan, Fabrication of hollow microporous carbon spheres from hyper-crosslinked microporous polymers. Small 2016, 12, 3134-3142.
[14]
H. J. Peng,; J. Y. Liang,; L. Zhu,; J. Q. Huang,; X. B. Cheng,; X. F. Guo,; W. P. Ding,; W. C. Zhu,; Q. Zhang, Catalytic self-limited assembly at hard templates: A mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 2014, 8, 11280-11289.
[15]
G. He,; S. Evers,; X. Liang,; M. Cuisinier,; A. Garsuch,; L. F. Nazar, Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 2013, 7, 10920-10930.
[16]
N. Jayaprakash,; J. Shen,; S. S. Moganty,; A. Corona,; L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904-5908.
[17]
H. W. Zhang,; O. Noonan,; X. D. Huang,; Y. N. Yang,; C. Xu,; L. Zhou,; C. Z. Yu, Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579-4586.
[18]
A. H. Lu,; W. C. Li,; G. P. Hao,; B. Spliethoff,; H. J. Bongard,; B. B. Schaack,; F. Schüth, Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem., Int. Ed. 2010, 49, 1615-1618.
[19]
R. Liu,; S. M. Mahurin,; C. Li,; R. R. Unocic,; J. C. Idrobo,; H. J. Gao,; S. J. Pennycook,; S. Dai, Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799-6802.
[20]
N. Liu,; Z. D. Lu,; J. Zhao,; M. T. McDowell,; H. W. Lee,; W. T. Zhao,; Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.
[21]
Z. A. Qiao,; B. K. Guo,; A. J. Binder,; J. H. Chen,; G. M. Veith,; S. Dai, Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Lett. 2013, 13, 207-212.
[22]
L. H. Zhang,; B. He,; W. C. Li,; A. H. Lu, Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.
[23]
T. Wang,; Y. Sun,; L. L. Zhang,; K. Q. Li,; Y. K. Yi,; S. Y. Song,; M. T. Li,; Z. A. Qiao,; S. Dai, Space-confined polymerization: Controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Adv. Mater. 2019, 31, 1807876.
[24]
D. W. Liu,; N. Xue,; L. J. Wei,; Y. Zhang,; Z. F. Qin,; X. K. Li,; B. P. Binks,; H. Q. Yang, Surfactant assembly within pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angew. Chem. 2018, 130, 11065-11070.
[25]
L. Peng,; C. T. Hung,; S. W. Wang,; X. M. Zhang,; X. H. Zhu,; Z. W Zhao,; C. Y. Wang,; Y. Tang,; W. Li,; D. Y. Zhao, Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073-7080.
[26]
L. Y. Chu,; A. S. Utada,; R. K. Shah,; J. W. Kim,; D. A. Weitz, Controllable monodisperse multiple emulsions. Angew. Chem. 2007, 119, 9128-9132.
[27]
H. Y. Chen,; Y. Zhao,; Y. L. Song,; L. Jiang, One-step multicomponent encapsulation by compound-fluidic electrospray. J. Am. Chem. Soc. 2008, 130, 7800-7801.
[28]
W. S. Zhu,; X. Gao,; Q. Li,; H. P. Li,; Y. H. Chao,; M. J. Li,; S. M. Mahurin,; H. M. Li,; H. Y. Zhu,; S. Dai, Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew. Chem. 2016, 128, 10924-10928.
[29]
Y. Fan,; J. Zhang,; Y. Shen,; B. Zhang,; W. N. Zhang,; F. W. Huo, Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1-28.
[30]
Q. Sun,; W. C. Li,; A. H. Lu, Insight into structure-dependent self-activation mechanism in a confined nanospace of core-shell nanocomposites. Small 2013, 9, 2086-2090.
[31]
A. H. Lu,; T. Sun,; W. C. Li,; Q. Sun,; F. Han,; D. H. Liu,; Y. Guo, Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem., Int. Ed. 2011, 50, 11765-11768.
[32]
Q. Sun,; B. He,; X. Q. Zhang,; A. H. Lu, Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 2015, 9, 8504-8513.
[33]
Z. Y. Chen,; B. He,; D. Yan,; X. F. Yu,; W. C. Li, Peapod-like MnO@Hollow carbon nanofibers film as self-standing electrode for Li-ion capacitors with enhanced rate capacity. J. Power Sources 2020, 472, 228501.
[34]
Y. Meng,; D. Gu,; F. Q. Zhang,; Y. F. Shi,; L. Cheng,; D. Feng,; Z. X. Wu,; Z. X. Chen,; Y. Wan,; A. Stein, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem. Mater. 2006, 18, 4447-4464.
[35]
H. F. Yang,; Y. Liu,; F. Q. Zhang,; R. Y. Zhang,; Y. Yan,; M. Li,; S. H. Xie,; B. Tu,; D. Y. Zhao, A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. J. Phys. Chem. B 2004, 108, 17320-17328.
[36]
Y. H. Deng,; D. W. Qi,; C. H. Deng,; X. M. Zhang,; D. Y. Zhao, Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28-29.
[37]
A. V. Rao,; M. M. Kulkarni,; D. P. Amalnerkar,; T. Seth, Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 2003, 206, 262-270.
[38]
J. Du,; L. Liu,; B. B. Liu,; Y. F. Yu,; H. J. Lv,; A. B. Chen, Encapsulation pyrolysis synchronous deposition for hollow carbon sphere with tunable textural properties. Carbon 2019, 143, 467-474.
[39]
S. Wang,; W. C. Li,; G. P. Hao,; Y. Hao,; Q. Sun,; X. Q. Zhang,; A. H. Lu, Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J. Am. Chem. Soc. 2011, 133, 15304-15307.
[40]
R. P. Fang,; S. Y. Zhao,; Z. H. Sun,; D. W. Wang,; H. M. Cheng,; F. Li, More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
[41]
H. J. Peng,; J. Q. Huang,; X. B. Cheng,; Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[42]
A. Manthiram,; S. H. Chung,; C. X. Zu, Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.
[43]
Y. Zhang,; W. C. Li,; B. He,; X. F. Yu,; L. Hou,; A. H. Lu, Utilizing the alterable solubility of chitosan in aqueous solution to synthesize nanosized sulfur for high performance Li-S batteries. Chin. J. Chem. 2019, 37, 775-780.
[44]
L. X. Yuan,; X. P. Qiu,; L. Q. Chen,; W. T. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. J. Power Sources 2009, 189, 127-132.
[45]
M. Q. Chen,; Z. Su,; K. Jiang,; Y. K. Pan,; Y. Y. Zhang,; D. H. Long, Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li-S battery. J. Mater. Chem. A 2019, 7, 6250-6258.
[46]
Y. C. Liu,; L. Z. Fan,; L. F. Jiao, Graphene highly scattered in porous carbon nanofibers: A binder-free and high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 1698-1705.
[47]
S. Y. Zheng,; Y. Chen,; Y. H. Xu,; F. Yi,; Y. J. Zhu,; Y. H. Liu,; J. H. Yang,; C. S. Wang, In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 2013, 7, 10995-11003.
[48]
Y. F. Shen,; J. M. Zhang,; Y. F. Pu,; H. Wang,; B. Wang,; J. F. Qian,; Y. L. Cao,; F. P. Zhong,; X. P. Ai,; H. X. Yang, Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 2019, 4, 1717-1724.
File
12274_2021_3290_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 November 2020
Revised: 04 December 2020
Accepted: 08 December 2020
Published: 05 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors are grateful to the financial support by the National Natural Science Foundation of China (Nos. 21776041 and 21875028), and Cheung Kong Scholars Programme of China (No. T2015036).

Return