Journal Home > Volume 14 , Issue 8

Developing highly active single-atom sites catalysts for electrochemical reduction of CO2 is an effective and environmental-friendly strategy to promote carbon-neutral energy cycle and ameliorate global climate issues. Herein, we develop an atomically dispersed N, S co-coordinated bismuth atom sites catalyst (Bi-SAs-NS/C) via a cation and anion simultaneous diffusion strategy for electrocatalytic CO2 reduction. In this strategy, the bonded Bi cation and S anion are simultaneously diffused into the nitrogen-doped carbon layer in the form of Bi2S3. Then Bi is captured by the abundant N-rich vacancies and S is bonded with carbons support at high temperature, formed the N, S co-coordinated Bi sites. Benefiting from the simultaneous diffusion of Bi and S, different electronegative N and S can be effectively co-coordinated with Bi, forming the uniform Bi-N3S/C sites. The synthesized Bi-SAs-NS/C exhibits a high selectivity towards CO with over 88% Faradaic efficiency in a wide potential range, and achieves a maximum FECO of 98.3% at -0.8 V vs. RHE with a current density of 10.24 mA·cm-2, which can keep constant with negligible degradation in 24 h continuous electrolysis. Experimental results and theoretical calculations reveal that the significantly improved catalytic performance of Bi-SAs-NS/C than Bi-SAs-N/C is ascribed to the replacement of one coordinated-N with low electronegative S in Bi-N4C center, which can greatly reduce the energy barrier of the intermediate formation in rate-limiting step and increase the reaction kinetics. This work provides an effective strategy for rationally designing highly active single-atom sites catalysts for efficient electrocatalysis with optimized electronic structure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction

Show Author's information Zhiyuan Wang1Chun Wang2Yidong Hu1Shuai Yang4Jia Yang1,6Wenxing Chen5Huang Zhou1Fangyao Zhou1Lingxiao Wang1Junyi Du1Yafei Li2( )Yuen Wu1,3( )
School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201210, China
Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei 230601, China

Abstract

Developing highly active single-atom sites catalysts for electrochemical reduction of CO2 is an effective and environmental-friendly strategy to promote carbon-neutral energy cycle and ameliorate global climate issues. Herein, we develop an atomically dispersed N, S co-coordinated bismuth atom sites catalyst (Bi-SAs-NS/C) via a cation and anion simultaneous diffusion strategy for electrocatalytic CO2 reduction. In this strategy, the bonded Bi cation and S anion are simultaneously diffused into the nitrogen-doped carbon layer in the form of Bi2S3. Then Bi is captured by the abundant N-rich vacancies and S is bonded with carbons support at high temperature, formed the N, S co-coordinated Bi sites. Benefiting from the simultaneous diffusion of Bi and S, different electronegative N and S can be effectively co-coordinated with Bi, forming the uniform Bi-N3S/C sites. The synthesized Bi-SAs-NS/C exhibits a high selectivity towards CO with over 88% Faradaic efficiency in a wide potential range, and achieves a maximum FECO of 98.3% at -0.8 V vs. RHE with a current density of 10.24 mA·cm-2, which can keep constant with negligible degradation in 24 h continuous electrolysis. Experimental results and theoretical calculations reveal that the significantly improved catalytic performance of Bi-SAs-NS/C than Bi-SAs-N/C is ascribed to the replacement of one coordinated-N with low electronegative S in Bi-N4C center, which can greatly reduce the energy barrier of the intermediate formation in rate-limiting step and increase the reaction kinetics. This work provides an effective strategy for rationally designing highly active single-atom sites catalysts for efficient electrocatalysis with optimized electronic structure.

Keywords: electronic structure modulation, electrochemical CO2 reduction, S, N-co-doped carbon nanotube, single bismuth sites

References(45)

[1]
Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Kibria, M. G.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98-106.
[2]
Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093-18100.
[3]
Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648-658.
[4]
Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.
[5]
Li, F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505-509.
[6]
Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270-7284.
[7]
Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551-2582.
[8]
Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-675.
[9]
Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326-11353.
[10]
Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560-587.
[11]
Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.
[12]
Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 2019, 31, 1903470.
[13]
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[14]
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[15]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[16]
Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303-12307.
[17]
Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 130, 1962-1966.
[18]
Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206-3211.
[19]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[20]
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[21]
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct., in press, .
[22]
Zhang, J.; Zheng, G. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[23]
Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893-903.
[24]
Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313-2317.
[25]
Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798-803.
[26]
Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856-2863.
[27]
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465-22469.
[28]
Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
[29]
Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443-15449.
[30]
Osmieri, L.; Videla, A.; Ocon, P.; Specchia, S. Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) catalysts in acidic medium: Insights on the effect of the transition metal. J. Phys. Chem. C 2017, 121, 17796-17817.
[31]
Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.
[32]
Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-20126.
[33]
Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. A.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777-2783.
[34]
Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[35]
Xue, P.; Wang, N. N.; Fang, Z. W.; Lu, Z. X.; Xu, X.; Wang, L.; Du, Y.; Ren, X. C.; Bai, Z. C.; Dou, S. X. et al. Rayleigh-instability-induced bismuth nanorod @ nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett. 2019, 19, 1998-2004.
[36]
Wang, Z. Y.; Yang, J.; Cao, J. B.; Chen, W. X.; Wang, G.; Liao, F.; Zhou, X.; Zhou, F. Y.; Li, R. L.; Yu, Z. Q. et al. Room-temperature synthesis of single iron site by electrofiltration for photoreduction of CO2 into tunable syngas. ACS Nano 2020, 14, 6164-6172.
[37]
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
[38]
Ye, L.; Ying, Y. R.; Sun, D. R.; Zhang, Z. Y.; Fei, L. F.; Wen, Z. H.; Qiao, J. L.; Huang, H. T. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 3244-3251.
[39]
Ito, Y.; Cong, W. T.; Fujita, T.; Tang, Z.; Chen, M. W. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2131-2136.
[40]
Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569-16573.
[41]
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[42]
Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318-2323.
[43]
Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093-1101.
[44]
Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.
[45]
Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961-1965.
File
12274_2021_3287_MOESM1_ESM.pdf (6.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2020
Revised: 06 December 2020
Accepted: 07 December 2020
Published: 05 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0208300 and 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21522107 and 21671180) and the DNL Cooperation Fund, CAS (No. NDL201918). We thank the photoemission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

Return